タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

programmingとProgrammingとscienceに関するshimanpのブックマーク (5)

  • 改訂版: プログラマーが効果的な可視化を作成する (前編) - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 改訂版について (5/7/2019公開) この記事は、私がこちらに公開したもの中では最も読まれているようです。そこで、執筆後に気づいたこと、古くなった情報、新しい技術動向などを考慮に入れて改訂をしました。主な変更点は以下の通りです: 新しいセクションの追加 最近のの紹介 細かな表現の修正 この記事は複数のセクションに分かれていますので、前編から始め、順番にアップデートして行きたいと思います。何かお気付きの点などありましたら、コメント欄、もしくはkonoアットマークucsd.eduにお願いいたします。 はじめに この記事は、可視化の専門

    改訂版: プログラマーが効果的な可視化を作成する (前編) - Qiita
  • 脳とコンピュータとの違い

    脳と現状のコンピュータは、計算モデル、アーキテクチャ、 アルゴリズムなどいろいろな観点からみて違いがあります。 はたしてコンピュータの上で脳と同じ機能は実現できるのでしょうか。 実現を難しくする要因として何が考えられるでしょうか。 ◆計算モデルの違い 計算する機械を数学的に抽象化したものを計算モデルと呼びます。 チューリングマシンは計算モデルの1つです。 チューリングマシンとは数学的に異なる計算モデルとしては、 例えば非決定性チューリングマシン、 (理想的な)アナログコンピュータ、量子チューリングマシン (量子コンピュータのモデル)があります。 これらはチューリングマシンよりも強力だったり速かったりします。 さて、「脳の計算モデル」はチューリングマシンと等価でしょうか、 それともより強力だったり速かったりするのでしょうか。 非決定性チューリングマシンは並列度が無限の計算機です。 脳は超並列

  • コンピュータサイエンス史上最大の課題「並列処理による性能向上」~情報処理学会創立50周年記念全国大会の招待講演

    「いま、並列処理の壁というコンピュータサイエンス史上最大の課題に直面しています。しかしこれはチャンスでもあります。新しい時代を切り開いていきましょう」。IBM名誉フェローのFran Allen氏は、昨日3月10日に行われた日の情報処理学会創立50周年記念全国大会の招待講演の演壇からこんなメッセージを聴衆に投げかけました。 Fran Allen氏は、コンパイラやプログラミング言語が専門で、女性で初めてチューリング賞を受賞した人。今回の招待講演のためにわざわざ来日したと紹介されました。 講演のタイトルは「The Challenge of the Multicores」。ここからは、Allen氏の講演の内容を紹介しましょう。 (この講演は英語で行われたものです。内容にはできるだけ正確を期したつもりですが、理解不足のところや聞き取れなかったところもありました。もし誤解や不正確なところがありました

    コンピュータサイエンス史上最大の課題「並列処理による性能向上」~情報処理学会創立50周年記念全国大会の招待講演
  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • 「物理法則を自力で発見」した人工知能 | WIRED VISION

    前の記事 「衛星成功に総書記は涙」:北朝鮮の核再開宣言とミサイル輸出 「物理法則を自力で発見」した人工知能 2009年4月15日 Brandon Keim Image credit: Science、サイトトップの画像はフーコーの振り子。Wikimedia Commonsより 物理学者が何百年もかけて出した答えに、コンピューター・プログラムがたった1日でたどり着いた。揺れる振り子の動きから、運動の法則を導き出したのだ。 コーネル大学の研究チームが開発したこのプログラムは、物理学や幾何学の知識を一切使わずに、自然法則を導き出すことに成功した。 この研究は、膨大な量のデータを扱う科学界にブレークスルーをもたらすものとして期待が寄せられている。 科学は今や、ペタバイト級[1ペタバイトは100万ギガバイト]のデータを扱う時代を迎えている。あまりに膨大で複雑なため、人間の頭脳では解析できないデータセ

  • 1