タグ

Deep Learningに関するshoh8のブックマーク (2)

  • 深層学習の数理

    東京大学 松尾研究室が主催する深層強化学習サマースクールの講義で今井が使用した資料の公開版です. 強化学習の基礎的な概念や理論から最新の深層強化学習アルゴリズムまで解説しています.巻末には強化学習を勉強するにあたって有用な他資料への案内も載せました. 主に以下のような強化学習の概念やアルゴリズムの紹介をしています. ・マルコフ決定過程 ・ベルマン方程式 ・モデルフリー強化学習 ・モデルベース強化学習 ・TD学習 ・Q学習 ・SARSA ・適格度トレース ・関数近似 ・方策勾配法 ・方策勾配定理 ・DPG ・DDPG ・TRPO ・PPO ・SAC ・Actor-Critic ・DQN(Deep Q-Network) ・経験再生 ・Double DQN ・Prioritized Experience Replay ・Dueling Network ・Categorical DQN ・Nois

    深層学習の数理
    shoh8
    shoh8 2019/08/07
    g検とともに読んでおくやつ
  • 畳み込みニューラルネットワークの仕組み | POSTD

    (編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明

    畳み込みニューラルネットワークの仕組み | POSTD
  • 1