Daniel Lemire's blog Daniel Lemire is a software performance expert. He ranks among the top 2% of scientists globally (Stanford/Elsevier 2024) and is one of GitHub's top 1000 most followed developers. Menu and widgets

ネットワークフロー好き好きマンとして,フローを布教したくなったので記事を書きました. ただし,フローの解説資料は既に素晴らしいものがたくさんあるので,今回は今まであまり焦点が当てられてこなかった部分を推して話をしたいと思います. テーマは,数あるフローの問題の関係を整理することです. フローの問題たちには共通の歴史があり,共通の定式化があり,共通のアルゴリズムの思想があります. その「共通」の部分を理解することで,フローに対する理解が深まり,より面白いと感じられると僕は思っていて,そこについて書きます. かなり基本的な内容しか書いてないので,強い人が得るものはあまりないかもしれません. あとこの記事はおきもちを書いてる部分が多いです. また,この記事では問題の話だけをしてアルゴリズムの詳細の話をほとんどしません.この辺りは 保坂さんのスライド などが非常に分かりやすいので,そちらを参照して
Backpropagation algorithm The backpropagation algorithm is essential for training large neural networks quickly. This article explains how the algorithm works. Please scroll down... Simple neural network On the right, you see a neural network with one input, one output node and two hidden layers of two nodes each. Nodes in neighboring layers are connected with weights \(w_{ij}\), which are the net
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く