タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Developersとpythonとblogに関するslay-tのブックマーク (3)

  • 一休レストランPython移行の進捗 - 一休.com Developers Blog

    レストラン事業部エンジニアの id:ninjinkun です。 一休レストランでは10年以上動いているシステムをPython 3で書かれた新システム(以下restaurant2)に順次移行する作業を進めています。現在ではPC用のレストランページ や主要な API を含め、いくつかのページがrestaurant2で提供されるようになっている状態です。記事ではこの移行の経緯と、restaurant2システムの詳細、Pythonを選んだ理由、現在の進捗状況をお伝えします。 経緯 一休レストランはサービスローンチ時よりClassic ASP(言語はVBScript)でシステムが構築されてきました(こちらに驚かれる方も多いと思いますが、歴史的経緯という言葉で強引にまとめて話を先に進めます)。このシステムは現在も一休レストランを支えているのですが、長年の改修による複雑性の増加、言語の古さ、言語機能の

    一休レストランPython移行の進捗 - 一休.com Developers Blog
  • 一休のETL処理をAirflowで再構築しました - 一休.com Developers Blog

    一休のデータサイエンス部に所属しています小島です。 以前データ分析基盤の構築で記事を上げていましたが、今回はETL*1周りの話をしようと思います。 user-first.ikyu.co.jp 今回ETLのツールとして導入したのはAirflowというツールです。 2017年のアドベントカレンダーでも紹介させていただきました。 一休のデータフローをAirflowを使って実行してみる 一休のETLの現状について 一休のETL周りは以下の画像のようになっていました。 課題 ETLの処理時間が伸びた(出社後も処理が続いていた) エラーのリカバリ作業に時間がかかる(ログが確認しにくい, サーバーに入って作業しなければいけない) 複雑な依存関係の定義がしにくい(どれとどれが依存しているかわからない) リソース負荷(全て並列で実行していた) 処理毎のボトルネックが把握できない ツールの問題というよりは正し

    一休のETL処理をAirflowで再構築しました - 一休.com Developers Blog
  • 将来発生するトランザクション数を予測する方法 - ZOZO TECH BLOG

    データサイエンティストの中村です。 webで発生するトランザクション(購買など)の中には、確率分布を仮定することで抽象化できる物があります。 今回は、トランザクションが発生する現象をモデリングする手法のひとつであるBG/NBDモデルと、この手法にもとづいて将来発生するトランザクションの回数を予測するためのライブラリであるlifetimesを紹介します。 トランザクションのモデリングについて 1987年にSchmittlein等によってPareto/NBDというモデルが提案されました。これは顧客の継続的に発生する購買行動に確率分布を当てはめ抽象化する手法で、結果として将来発生する購買を予測することに成功しました。顧客が離脱したか否かの判断や顧客生涯価値の見積もりが可能になるという点で、Pareto/NBDモデルは顧客分析における非常に強力なツールのひとつです。 Pareto/NBDをベースと

    将来発生するトランザクション数を予測する方法 - ZOZO TECH BLOG
  • 1