Twitter: ottamm_190 追記 2022/4/24 speakerdeck版:https://speakerdeck.com/masatoto/shen-ceng-xue-xi-falsebu-que-shi-xing-uncertainty-in-deep-neural-networks コンパクト版:https://speakerdeck.com/masatoto/shen-ceng-xue-xi-niokerubu-que-shi-xing-ru-menRead less
Twitter: ottamm_190 追記 2022/4/24 speakerdeck版:https://speakerdeck.com/masatoto/shen-ceng-xue-xi-falsebu-que-shi-xing-uncertainty-in-deep-neural-networks コンパクト版:https://speakerdeck.com/masatoto/shen-ceng-xue-xi-niokerubu-que-shi-xing-ru-menRead less
1.はじめに 以前から人の動画から3Dモデルを推定する手法はありましたが、複雑な動きの場合は細部でゆがみやズレが生じていました。今回は、この問題点を改善したVIBEという技術をご紹介します。 *この論文は、2019.12に提出されました。 2.VIBEとは? VIBEとは、Video Inference for Body Pose and Shape Estimation の略で、ディープラーニング を使って、人の動画から3Dモデルを推定する技術です。 使用しているモデルは、SMPL (Skinned Multi-Person Linear model)と言う人間の自然なポーズにおける多種多様な体型を正確に表現するためのモデルです。 このモデルは、N=6890個の頂点を持っており、頂点の重み付き和からP=23個の関節位置を求めることが出来ます。 下記が、VIBEのアーキテクチャーです。入力
深層学習の今のところの限界「何ができて、何ができないか?」 2018.01.08 Updated by Ryo Shimizu on January 8, 2018, 08:29 am JST あけましておめでとうございます。 先日、MIT Technology Reviewにこのような記事が掲載されていました。 深層学習の過大評価は危険、ウーバーAI研究所の前所長が指摘 この論文を発表したのはニューヨーク大学の心理学者のゲイリー・マーカス教授。心理学者ということで、我々情報工学の立場とはまた違う立場で深層学習にできることとできないことを分離しています。 筆者はこのニュースを見て最初は反発したのですが、原文を読んでみると現状のディープラーニングの課題についてよくまとまっているのではないかと思いましたので紹介します。原文はこちら ■ディープラーニングの限界 マーカス教授によると、ディープラー
動機 いわずもがなですが、機械学習の勉強にはとても時間が掛かります。 でも、同じ勉強時間を費やしたとしても、教材の良し悪しで捗り方が大きく変わってくることは、誰もが実感していることだと思います。 そこで、本記事ではテーマごとに私が考える最強の教科書をリストしていこうと思います。 ディープラーニング(アルゴリズムの理解) 「Deep Learning」An MIT Press book, 2016/12 発行 http://www.deeplearningbook.org/ 印刷本も売られてますが、上のWebページでいつでもタダで読めます。(版権上の問題でPDFの形では配布できない&してないそうです) この本は、ここ数年のディープラーニングの進歩のうち研究者の間ではメジャーとなっているであろうテーマはすべて書いてある、ともいえる内容の広さがありつつ、それぞれのテーマについて理論的背景と具体的
8月の頭からディープラーニングを実装していたのを、先日、プレゼンしてきました。 プログラマのための数学勉強会@福岡 - connpass ぼくの実装した最弱のディープラーニング from なおき きしだ ※追記 2023/4/12 SpeakerDeckにも置いてます https://speakerdeck.com/kishida/weakest-deep-learning-i-implemented GPU対応したり、ドロップアウトとかミニバッチとかいろいろ実装して、結構つよくなってます。 ちゃんと学習してくれないこと以外は。 ソースはこんな感じになってきています。 https://github.com/kishida/neuralnet/tree/CorrectOperationAsCCN GPU対応にはaparapiを使っています。JavaでGPUコードが書けるスグレモノです。 ap
http://deep-learning-hackathon.connpass.com/event/12867/ このイベントに参加して、DeepLearning(Caffe)を回してみました。 大体これまで上がってる記事で、ゴチうさでDeepLearningされてるのがあったので対抗してきんモザでやってみました。n番煎じです。((既にラブライブ等でもされてるようなので)) 環境 Dynabook RX3(Core i5 M520, 4GBMem, Linux Mint 17.1 64bit) Amazon EC2 g2.2xlarge インスタンス 問題設定 事前にanimefaceで顔領域を検出した部分に対し、アリスであるかカレンであるか、それとも他のキャラであるかを判定したい 単純な3クラス分類問題ですが、アリスもカレンもキンパツなので、色によるキャラ判別はできません。おそらく輪郭や
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く