タグ

データ構造に関するsleepy_yoshiのブックマーク (43)

  • 要素の挿入、削除、ランダムアクセスが全部高速なリストを作った - kaisehのブログ

    スキップリスト(Skip List)は1990年に発表された比較的新しいアルゴリズムで、要素の挿入や削除、検索を平衡木と同等のパフォーマンスで実行可能なリスト構造です。 Skip Listは連結リストの多層構成になっています。路線に例えると、最下層のリンクは各駅停車のように、全要素を結んでいます。一方、上層のリンクは急行や特急のように、途中の要素をスキップするようになっています。この路線を特急→急行→…→各駅と乗り継ぐことで、目的の要素に高速に到達できる仕組みです。もっと詳しい解説はこちらやこちらにあります。 で、ここからが題です。Skip Listの実装はいくつも出ているんですが、Sorted Listとしての実装ばかりで、要素を任意順序で格納できてランダムアクセス(indexを指定してのアクセス)可能なSkip Listが見つからなかったので、自分で作ってみました。 通常のSkip

    要素の挿入、削除、ランダムアクセスが全部高速なリストを作った - kaisehのブログ
  • List of data structures - Wikipedia

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures. Data types[edit] Primitive types[edit] Boolean, true or false. Character Floating-point representation of a finite subset of the rationals. Including single-precision and

    List of data structures - Wikipedia
  • 高速かつ省メモリで文字列を扱うデータ構造「wavelet tree」:CodeZine

    はじめに 大規模なデータを扱うアプリケーションでは、速度とともに作業領域量も大きな問題となります。作業領域がメインメモリに収まらない場合、スワッピングが発生し、大幅な速度低下につながります。そのため近年、データ構造は高速なだけでなく、作業領域量が小さいことも求められています。今回紹介するのは2003年に提案されたデータ構造、wavelet tree(以下「WT」と表記)です。WTは圧縮索引やSuccinct Data Structureなど、データをコンパクトに表現する際に重要なデータ構造です。WTは文字列T[0...n-1]が与えられた時、次の2つの操作を定数時間でサポートします。rank(p, c)――T[0...p]中のcの出現回数を返すselect(i, c)――(i+1)番目のcの位置を返す  WTの作業領域量は、文字列をそのまま保存した時の約2倍程度です。対象読者 C++の利用