タグ

2009年5月7日のブックマーク (5件)

  • Canonical Huffman Codes - naoyaのはてなダイアリー

    1999年出版と少し古い書籍ですが Managing Gigabytes を読んでいます。理解のために 2.3 で出て来る Canonical Huffman Codes の習作を作りました。 ハフマン符号は情報圧縮で利用される古典的なアルゴリズムで、圧縮対象データに出現するシンボルの出現確率が分かっているときに、その各シンボルに最適な符号長の接頭語符号を求めるものです。 通常のハフマン符号はポインタで結ばれたハフマン木を構築して、ツリーを辿りながら各シンボルに対する接頭語符号を計算します。このハフマン木には曖昧な箇所が残されています。ハフマン木は木の辺を右に辿るか左に辿るかで符号のビットが決まりますが、右が 0 で左が 1 などというのはどちらでも良いという点です。(曖昧だから駄目、という話ではありません。) 従って、ハフマン木から生成される符号は一意には決まりません。 ここで各シンボル

    Canonical Huffman Codes - naoyaのはてなダイアリー
  • gzipの代わりにxzを使おう | Okumura's Blog

    GNU coreutils をソースからコンパイルしようとしてびっくり。coreutils-7.3.tar.gz (9690396バイト) 以外に coreutils-7.3.tar.xz (4045980バイト) が置いてある。*.xz は *.gz の42%のサイズしかない。 7-Zip で使われているアルゴリズム LZMA が gzip 相当の圧縮ツール xz として実装されたのだ。 これからは gzip と打つ代わりに xz と打とう。キーストローク数が半減するだけでなく,ディスク資源が半減し,地球温暖化も半減する。

  • Kernel Averaged Perceptron の話 - mtbrの日記

    要約すると、 カーネルパーセプトロンを使うくらいならサポートベクターマシンを使ったほうがいい という話。 以下、パーセプトロンとかカーネルとか基的なところばかり書きます。 <パーセプトロン> 正負ラベルを予測する二値分類を行うパーセプトロンの場合、以下のアルゴリズムで訓練する。 ・以下を、重みが収束するまで繰り返す 1. サンプル(正解ラベル付き)をランダムにとってくる 2. 現在の重みとサンプルの内積をとって、その符号(つまり予測されたラベル)が正しければ 1. へ 3. 重み = 重み - あるべき符号 * サンプル 推論(符号が未知のサンプルに対するラベルの予測)のときも、2. と同様に重みとの内積の結果の符号をとって返す。 パーセプトロンはオンラインで使える。 つまり、サンプルが次々と追加される場合でも、順序がランダム(変な偏りがない)と仮定できるなら、上記のアルゴリズムをそのま

    Kernel Averaged Perceptron の話 - mtbrの日記
  • DO++: 海外のブログのお勧め

    海外のブログでお勧めはどういうのありますかとよく聞かれるのでかいてみます。 といってもそんなないけど。 Terence Tao 非常に幅広い分野の第一線で活躍している数学者のテレンスタオ[jawiki]のブログ.ブログで毎回新しい定理を証明しちゃったり、突然、相対性理論の分かりやすい証明をしたりとすごい.コメントでの議論も丁寧. ブログで書いたのをまとめたが出るそうですが、目次を読むとブログの範疇をこえてる・・ natural language processing blog 自然言語処理ではたぶん一番有名なブログ. による.いろいろな手法の解説から現在ある問題(自然言語処理以外にもアカデミック的な問題とかも含め).守備範囲が大体私と似ていて読んでいて楽しい.ちなみにHal Daumeはハスケラーで、そこそこ有名なhaskel tutorialかいてたりする Google Resear

    DO++: 海外のブログのお勧め
  • 自然言語処理の学会 - DO++

    プログラミング言語の学会に触発された作った。私視点で書いたので、間違ってたりしたら突っ込んでください。 自然言語処理は、情報検索、ウェブ、機械学習とかとの境界領域だったりするのですが、そういうのは除いてます。 大体の学会情報はACL wiki 論文はACL anthology から得られると思います ACL The Association for Computational Linguistics ACL2008 自然言語処理の一番でかい会議。理論からアプリケーションまで何でも集まるが、強いて言えば 機械翻訳、構文解析が多い。いろいろなワークショップ(10ぐらい)も併設される。 EMNLP Conference on Empirical Methods in Natural Language Processing EMNLP2008 言語情報から統計的な情報を取り出して機械学習を使って自然

    自然言語処理の学会 - DO++