タグ

2010年4月8日のブックマーク (2件)

  • 最尤推定、MAP推定、ベイズ推定 - 人工知能に関する断創録

    1.2.5 曲線フィッティング再訪 1.2.6 ベイズ曲線フィッティング のところを実装してみます。前回は、最小二乗法で曲線フィッティングをしたけど、ベイズ的な方法で解こうって話のようです。この2つの節では、 最尤推定 最大事後確率(MAP)推定 ベイズ推定 という3つのパラメータ推定方法が曲線フィッティングという具体例で説明されてます。他の教科書では抽象的に定式化されていて違いがよくわからなかったけど、この章では曲線フィッティングという具体例に基づいて説明されているのでわかりやすいと感じました。 最尤推定 まず、最尤推定のプログラムです。実は、最尤推定で対数尤度(1.62)を最大化することは、最小二乗法の二乗和誤差関数E(w)の最小化と等価なのでwの求め方は最小二乗法(2010/3/27)とまったく同じです。 最尤推定では、目標値tの予測分布を求めるためもう1個予測分布の精度パラメータ(

    最尤推定、MAP推定、ベイズ推定 - 人工知能に関する断創録
  • 博士生活振り返り - DO++

    ずっとドタバタしていたのですが、ようやく新しい生活のリズムがでてきました。 無事、情報理工学の博士号を取得して卒業し、4月からPreferred Infrastructureでフルタイムで働いています。 研究方面からのお誘いもいろいろあったのですが、会社一に専念しております。 ただ、研究活動はこれからも会社のバックアップのもとしていきます。 また、3月に結婚もしました。 年明けから博士卒業、結婚の二柱に加えてNLPチュートリアル、会社の仕事とテンパってました。 なんとか体を壊さず乗り越えられたのはみなさんの助けです。 しかし、喉元過ぎると熱さ忘れるという言葉通り、「これはもうだめだろう」と追い詰められていた時の気持ちを既に忘れつつあります。 誰かの参考になるかもしれませんので、この時の気持ちも含め博士3年過ごして感じたことや、研究の話とかを思い出せる範囲で書いてみます。 --- 私が修

    博士生活振り返り - DO++