今回は、非線形サポートベクトルマシンを試してみます。線形SVM(2010/5/1)は、カーネル関数に線形カーネル(ただの内積)を使いましたが、これを多項式カーネル(A)やガウスカーネル(B)に変更します。 カーネル関数は元のベクトルxを非線形写像によって高次元空間に写像した特徴ベクトルφ(x)の内積(C)で定義されます。 一般に特徴ベクトルφ(x)は高次元空間(無限次元空間でもOK)になるので普通にやってたら内積の計算量が非常に大きくなります。そこで、特徴ベクトルφ(x)の内積を計算せずに多項式カーネル(A)やガウスカーネル(B)の計算で置き換えるテクニックをカーネルトリックと呼ぶとのこと。多項式カーネルやガウスカーネルを使うとφ(x)を陽に計算する必要がなくなります。ただ、元の空間xでの内積は必要なんですよね・・・最初は、カーネルトリックのありがたみがよくわからなかったのですが、「入力空