タグ

Algorithmに関するsoh3914のブックマーク (23)

  • https://scikit-learn.org/stable/modules/manifold.html

  • Homepage

    With CellPAINT, you can create dynamic illustrations of the inner molecular structure of viruses and living cells. CellPAINT pictures are based on experimental results from many different laboratories. The size and shape of each molecule is based on atomic structures determined by x-ray crystallography, NMR spectroscopy and electron microscopy, and key interactions, such as the embedding of protei

  • LaTeX/Algorithms - Wikibooks, open books for an open world

    The latest reviewed version was checked on 14 September 2024. There are template/file changes awaiting review. Getting Started Introduction Installation Installing Extra Packages Basics How to get help Common Elements Document Structure Text Formatting Paragraph Formatting Colors Fonts List Structures Special Characters Internationalization Rotations Tables Title creation Page Layout Customizing P

  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • 最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ

    動的計画法とメモ化再帰 今回は、非常によく用いられるアルゴリズムである、「動的計画法」「メモ化再帰」について説明します。この2つはセットで覚えて、両方使えるようにしておくと便利です。 なお、メモ化再帰に関しては、第5・6回の連載の知識を踏まえた上で読んでいただけると、理解が深まります。まだお読みになっていない方は、この機会にぜひご覧ください。 中学受験などを経験された方であれば、こういった問題を一度は解いたことがあるのではないでしょうか。小学校の知識までで解こうとすれば、少し時間は掛かるかもしれませんが、それでもこれが解けないという方は少ないだろうと思います。 この問題をプログラムで解こうとすると、さまざまな解法が存在します。解き方によって計算時間や有効範囲が大きく変化しますので、それぞれのパターンについて考えます。 以下の説明では、縦h、横wとして表記し、プログラムの実行時間に関しては、

    最強最速アルゴリズマー養成講座:アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった (1/5) - ITmedia エンタープライズ
  • GitHub - daimatz/w8prml

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    GitHub - daimatz/w8prml
    soh3914
    soh3914 2012/11/12
    "東工大で行っている W8 PRML 読書会のページです。"
  • Burrows Wheeler TransformとLF mapping - Preferred Networks Research & Development

    最近オープンウォーターダイバーのライセンスを取りました。徳永です。 今日はBurrows Wheeler Transform(BW変換もしくはBWT)の逆変換において用いられるLF mappingを説明します。 BWTはデータ圧縮の前処理などに使われるテクニックです。Burrows Wheeler Transformはとても簡単でわかりやすい(高速な実装は複雑ですが……)のですが、逆変換で用いられるLF mappingは、実装は簡単なものの、なぜそれでよいのかは少しわかりにくいところがあります。また、私はこれまで、LF mappingがなぜあれでうまくいくのか、わかりやすい説明を日語でも英語でも見た記憶がありません。そこで今回はLF mappingを中心に説明します。なお余談ですが、BTWのMichael Burrowsは現在はGoogle勤務で、ChubbyやBigTableなどのソフ

    Burrows Wheeler TransformとLF mapping - Preferred Networks Research & Development
  • Algorithm::Diff で類似文字列検索

    Algorithm::Diff で類似文字列検索 2008-04-22-3 [Algorithm][Programming] Perl のモジュール Algorithm::Diff[2004-12-12-2]を使って、線形時間で類似文字列検索するサンプルプログラム。 まあ、 agrep があればそれでいいんですけどね。 サンプルコード(ads.pl): #!/usr/bin/perl use strict; use warnings; use Algorithm::Diff; use utf8; use Encode; use open ':utf8'; binmode STDIN, ":utf8"; binmode STDOUT, ":utf8"; my $key = shift; my @seq1 = split(//, decode('utf-8', $key)); while (<

    Algorithm::Diff で類似文字列検索
  • Open Data Structures

    Open Data Structures covers the implementation and analysis of data structures for sequences (lists), queues, priority queues, unordered dictionaries, ordered dictionaries, and graphs. Data structures presented in the book include stacks, queues, deques, and lists implemented as arrays and linked-lists; space-efficient implementations of lists; skip lists; hash tables and hash codes; binary search

    soh3914
    soh3914 2012/10/21
    データ構造について。
  • Precision and recall - Wikipedia

    Precision and recall In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written as a formula: Recall (also known

    Precision and recall - Wikipedia
  • g86 has gone.

    The g86.dbcls.jp server is temporally unavailable. We're aware of and working on it. If you are looking for free and cc-by media contents, visit TogoTV/Picture Gallery. Thanks!

  • EMアルゴリズムによる混合分布のパラメーター推定の解析計算&実装例 from 「Rによるモンテカルロ法入門」 - My Life as a Mock Quant

    問題設定 R言語の書籍「Rによるモンテカルロ法入門」 のEMアルゴリズムに関連した「練習問題5.14」をpthonの練習がてらEMアルゴリズム構築までの数式もメモりながら解いてみたというお話。問題設定としては という混合分布(分布から確率、分布から確率でサンプリング)から個サンプリングした状況を考えて、このパラメーターをEMアルゴリズムで推定するというもの。機械学習の分野でいう所の「教師なし2クラス分類」に該当する(たぶん)。 グラフを使ってもうちょっとちゃんと説明しておくと、実際に観察された青い棒グラフで示されているデータは赤色のグラフで示されているからのサンプルなのか、それとも緑色のグラフで示されているからのサンプルなのかを識別するための閾値的な量になっているというパラメーターを推定してましょうと、そして、既存のデータはのどちらの分布から来た可能性が高いのかを判断しましょうとそういう問

    EMアルゴリズムによる混合分布のパラメーター推定の解析計算&実装例 from 「Rによるモンテカルロ法入門」 - My Life as a Mock Quant
  • 検索における適合率 (Precision) と再現率 (Recall)

    検索における適合率 (Precision) と再現率 (Recall) 2008-01-17-1 [IIR] 「Introduction to Information Retrieval」[1] の輪講の第一回[2008-01-12-1]でちらっと話しましたが、第一章の 1.1 に Precision と Recall の説明があります(第八章でも出てきます)。 若干混乱しやすくややこしい話なので、ここで改めて解説します。 § Precision (適合率) とは、 全検索結果に対しての、 検索要求 (information need) を満たす検索結果の割合です。 例えば、 「MacBook Air の重量を知りたい」という検索要求を満たすために検索キー「MacBook Air 重さ」でウェブ検索した結果100件のうち、検索要求を満たす(重さが分かる)のが85件だとすると、 Precis

    検索における適合率 (Precision) と再現率 (Recall)
  • 類似度と距離 - CatTail Wiki*

    2つのデータが似ている度合いを,類似度の大きさや距離の近さといった数値にしてあらわすことで,クラスタ分析や,k-近傍法,多次元尺度構成法(MDS)をはじめとするいろいろな分析を行うことが可能となる. ここでは,よく知られている類似度や距離について述べる. 類似度という概念は,2つの集合の要素がまさにどれだけ似ているかを数量化したものであり,距離とは,要素同士の離れ具合,従って非類似度とちかい概念と考えてもよい. 参考までに数学における距離の概念の定義を示すと, 距離空間の定義 Sを1つの空でない集合とし,dをSで定義された2変数の実数値関数 d(SxS) → R が,以下の4条件(距離の公理) D1 : (非負性) 任意のx,y∈Sに対して d(x,y)≧0. D2 : (非退化性) x,y∈Sに対し d(x,y)=0  ⇔ x=y. D3 : (対称性) 任意のx,y∈Sに対して d(x

    類似度と距離 - CatTail Wiki*
  • Fast gapped-read alignment with Bowtie 2 - Nature Methods

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

    Fast gapped-read alignment with Bowtie 2 - Nature Methods
  • de Bruijn Graph を使った de novo アセンブリの発想がすごい件 - ほくそ笑む

    Velvet や ABySS などの代表的な de novo アセンブリツールでは、アルゴリズムに de Bruijn Graph というのを使っているそうです。どうやってアセンブルしているんだろう?と興味を持っていたので、元ネタの An Eulerian path approach to DNA fragment assembly を読んでみたんですが、その発想のすごさに度肝を抜かれました。せっかくなので、ここで簡単に説明してみたいと思います。 ケーニヒスベルクの橋 まずはグラフ理論の説明から。グラフ理論は、18世紀にオイラーという数学者が「ケーニヒスベルクの橋」という問題を解くために考え出したといわれています。 「ケーニヒスベルクの橋」は、次のような問題です。 18世紀の初めごろにプロイセン王国の首都であるケーニヒスベルクという大きな町があった。この町の中央には、プレーゲル川という大き

    de Bruijn Graph を使った de novo アセンブリの発想がすごい件 - ほくそ笑む
  • BWT と PPM - naoyaのはてなダイアリー

    Burrows Wheeler Transform (BWT, Block-sorting) と Prediction by partial matching (PPM) は質的に同じ事をやっている、というお話です。 先日 Managing Gigabytes を読んでいたところ、P.69 で "block sorting is very closely related to the PPM* method, which is a variant of PPM that allows arbitrary-length contexts." という記述があり、どうにも気になったので調べてみました。 サマリとしては、BWT と PPM の一種である PPM* はいずれも文脈から次の1文字を一意に決定するという概念で見ると質的に同じことをやっていると言える、というところです。 BWT のあら

    BWT と PPM - naoyaのはてなダイアリー
  • Burrows Wheeler Transform と Suffix Array - naoyaのはてなダイアリー

    ,. -‐'''''""¨¨¨ヽ (.___,,,... -ァァフ|          あ…ありのまま 今日 起こった事を話すぜ! |i i|    }! }} //| |l、{   j} /,,ィ//|       『BWT について調べていたら Suffix Array のライブラリができていた』 i|:!ヾ、_ノ/ u {:}//ヘ |リ u' }  ,ノ _,!V,ハ | /´fト、_{ル{,ィ'eラ , タ人        な… 何を言ってるのか わからねーと思うが /'   ヾ|宀| {´,)⌒`/ |<ヽトiゝ        おれも何をされたのかわからなかった… ,゙  / )ヽ iLレ  u' | | ヾlトハ〉 |/_/  ハ !ニ⊇ '/:}  V:::::ヽ        頭がどうにかなりそうだった… // 二二二7'T'' /u' __ /:::::::/`ヽ /'

    Burrows Wheeler Transform と Suffix Array - naoyaのはてなダイアリー
  • アルゴリズムの紹介

    ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意していま

  • 3.5 最尤法によるパラメータ推定