画像センシングシンポジウム (SSII 2019) の企画セッション「深層学習の高速化 〜 高速チップ、分散学習、軽量モデル 〜」の講演資料です。 深層学習モデルを高速化する下記6種類の手法の解説です。 - 畳み込みの分解 (Factorization) - 枝刈り (Pruning) - アーキテクチャ探索 (Neural Architecture Search; NAS) - 早期終了、動的計算グラフ (Early Termination, Dynamic Computation Graph) - 蒸留 (Distillation) - 量子化 (Quantization)Read less