タグ

予測とデータに関するsotukenyouのブックマーク (10)

  • 競馬の予測をガチでやってみた - stockedge.jpの技術メモ

    的に競馬なんてやるべきではないと私は思っている。胴元の取り分が多いからだ。宝くじに比べればまだましだが、それでも賭け金の20~30%は胴元に取られることになる。*1 しかし今回は、ちょっと思い立って競馬の予測をやってみることにした。 理由は馬券の安さだ。私は現在、資金量が少ない人間でも不利にならない投資先を探しているのだが、馬券の一枚100円という安さは魅力的に映る。株の場合にはどんな安い株であれ最低購入額は数万円以上*2なので、ある程度まとまった資金が必要になる。 また、競馬には技術介入の余地(努力次第で勝利できる可能性)がある。 例えばこんな例がある。 160億円ボロ儲け!英投資会社が日の競馬で荒稼ぎした驚きの手法 - NAVER まとめ 彼らは統計解析によって競馬で勝っており、その所得を隠していたらしい。こういうニュースが出るということは、解析者の腕次第では競馬で勝てる可能性が

    競馬の予測をガチでやってみた - stockedge.jpの技術メモ
  • 第7回 競馬予測を機械学習で解くための方法と評価方法

    第7回目の理論記事では競馬をどのように機械学習問題に落とし込むのか、また学習した予測モデルの性能評価方法について説明していきます。 教師あり学習と教師なし学習 機械学習の問題は**教師あり学習(Supervised Learning)と教師なし学習(Unsupervised Learning)**の大きく2つに分類されます1。 教師あり学習とは、特徴ベクトル $ \mathbf{x}_i $ に対する望ましい応答 $ y_i $ の組 $ {(\mathbf{x}_i, y_i) } $ を訓練データとして与え、それをガイドにして関係 $ y = f(\mathbf{x}) $ を学習をします。そのようにして得られた予測モデル $ f $ に未知の特徴ベクトルを与えることで未来の現象を予測します。予測モデル $ f $ は、線形モデル、ニューラルネットワーク、決定木、サポートベクターマシン

    第7回 競馬予測を機械学習で解くための方法と評価方法
  • ロジスティック曲線の解法(最小二乗法)について困っています。

    「分かっております」の式は明らかに嘘。 一瞥しておかしいと分かるのは、Σの外にxがある、という点です。実際に、a=... の式にデータを代入してaを計算しようと取りかかってみれば、すぐに立ち往生するでしょう。xというのはサンプル点の列x[k] (k=1,2,.....,n)のことであり、Σの中であれば、k=1,2...nについて総和を取ればよい。ですが、logxの所には、n個あるxのうち、はてさてどれを代入すりゃいいの?? つまり、そもそも式として体をなしていないんです。(おかしいところは、それだけじゃないのですが。) じゃ、どうしましょうか。 既に出ている回答のように、非線形最小二乗法の問題として扱う。というのが、ご質問に対するストレートな回答でしょう。大変そうに見えても、やってみりゃどうということはありません。(詳しいやり方をご所望なら回答します。) ところで「過去の実績を基に、将来値

    ロジスティック曲線の解法(最小二乗法)について困っています。
  • 一般化線形モデルによるデータの近似 - MATLAB & Simulink Example - MathWorks 日本

    この例では、glmfit と glmval を使用して、一般化線形モデルの当てはめと評価を行う方法を示します。通常の線形回帰を使用すると、直線、またはパラメーターにおいて線形である任意の関数を、正規分布した誤差を伴うデータに当てはめることができます。これは最もよく使用されている回帰モデルですが、必ずしも現実的なモデルであるとは限りません。一般化線形モデルは、線形モデルを 2 つの方法で拡張したものです。第 1 に、リンク関数を導入することで、パラメーターにおける線形性の仮定が緩和されます。第 2 に、正規分布以外の誤差分布をモデル化できます。 一般化線形モデル回帰モデルは、応答変数 (一般に y で示される) の分布を、1 つ以上の予測子変数 (一般に x1、x2 などで示される) を使用して定義します。最もよく使用されている回帰モデルである通常の線形回帰は、正規確率変数として y をモデ

  • Q1

    Q1:相関と回帰の違いは何か?2つの変数の比例関係を見る点では相関も回帰分析も変わりないように思われるが…。 A1:2変数がどれくらい散らばっているかを表すのが相関[係数]である(図1a)。一方の変数から他方の変数を予測するために最も都合の良い直線を引くのが回帰[分析]である(図1b)。これらの目的は根的に異なり,Altman1)も両者を同時に求めることはあり得ないと述べている。従って,事前に「比例関係」とは何かを明確に定義づけて使い分けるのがポイントとなろう。 同一のデータであっても,相関係数と回帰係数が大きく異なることは意外に多い。1つの例を挙げよう。図2aは相関係数と回帰係数が,ともに1の直線関係にある例である。さて図2bは図2aと比べて回帰式が変化せず,相関係数のみが低くなった例である。回帰係数はyに対し,x方向からみて誤差が最小となるような直線を引くから1になるのである。もちろ

  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • Big Data Analytics | IBM

    Big data analytics Leverage the most effective big data technology to analyze the growing volume, velocity and variety of data for the greatest insights Big data analytics is the use of advanced analytic techniques against very large, diverse data sets that include structured, semi-structured and unstructured data, from different sources, and in different sizes from terabytes to zettabytes. Big da

    Big Data Analytics | IBM
  • 線形予測フィルター係数 - MATLAB lpc - MathWorks 日本

    [a,g] = lpc(x,p) では、過去のサンプルに基づいて実数値時系列 x の現在値を予測する、p 次の線形予測子 (FIR フィルター) の係数が求められます。この関数はさらに、予測誤差の分散 g を返します。x が行列の場合、この関数は各列を独立チャネルとして扱います。

  • テラバイトのデータ | 構造化知識研究センター

    テラバイトデータや構造化知識研究に関する過去の記事です。 1990年6月 コンピューターの中央処理装置4台を並列的につなぎ、人間のように推理したり連想したりするコンピューターの模擬実験に、九州大学の研究グループが成功した。1991年度にも20台に増結する計画で、最終的には1万台をつなぎ、人間の思考そっくりの柔軟性に富んだコンピューターシステムを目指す。キャリアウーマン並みの有能秘書や、建物の形状を判断できる掃除ロボットの開発にもつながると期待されており「人工知能」開発競争に一石を投じそうだ。 九州大学で実験に成功 模擬実験を行ったのは、九大総合理工学研究科の雨宮真人教授(情報システム専攻)のグループ。雨宮教授らは、記憶した知識で推論や連想を行う人間の思考回路網に着目。「物-果物-黄色-酸っぱい-レモン」など属性や因果関係でつながる情報を与えて連想ネットワークを構成。このネットワーク網をコ

  • NeuralTools - Intelligent Predictions using Neural Networks in Excel - Lumivero

    Make intelligent predictions with Lumivero’s sophisticated neural networks tool, NeuralTools. By identifying patterns in historical or new, incomplete data, NeuralTools can provide insight to help guide big decisions. Plus, NeuralTools can automatically update predictions when input data changes, saving time and enabling more robust analyses. NeuralTools is a sophisticated data mining application

    NeuralTools - Intelligent Predictions using Neural Networks in Excel - Lumivero
  • 1