タグ

ブックマーク / nmoriyama.hatenablog.com (2)

  • GPT-3の学習データはどのように作られたか - moriyamaのエンジニアリング備忘録

    OpenAIが発表した言語モデルGPT-3はパフォーマンスの高さから各方面で注目されており、ついにはMicrosoftが学習済みモデルの利用を独占化しました。 私個人の所感としてこれまで学習済みモデルは無料公開するという流れを無視し、(アーキテクチャではなく)学習済みモデルが商品化するのはAIビジネスの一つの転換期と感じています。 深層学習による自然言語処理分野で巨大化していくモデルを十分に学習させるためにはWebデータの活用が大きな役割を果たしています。一方、その量に関する話題はあるものの、利用にあたっての細かな前処理に関する議論はあまりなされていない印象です。 そこで記事は学習データの構築にフォーカスします。 GPT-3の論文でも言及されている通り、学習データはGoogle Researchが発表したT5のデータを踏襲したと書かれていますので、まずはT5のデータから見て行きましょう。

    GPT-3の学習データはどのように作られたか - moriyamaのエンジニアリング備忘録
  • 自然言語処理でBERTまでの流れを簡単に紹介 - moriyamaのエンジニアリング備忘録

    はじめまして@vimmodeです。普段はMNTSQというリーガルテックの会社で自然言語処理をしています。今回はBERTとBERTまでの流れを簡単に紹介します。 自然言語処理で今やデファクトスタンダードとなりつつであるBERT。登場当時はモデルの複雑さに伴う計算環境や計算リソースの確保が難しく気軽に動かせなかったが、ColabやKaggleカーネル環境が整備されたきたおかげで誰でも気軽に使えるようになりました。 また、haggingface社が公開したBERTと関連モデルのラッパーライブラリであるtransformersによりわずか10行程度でBERTモデルを記述できます。 一方、自然言語処理を始めて間もない段階でいきなりBERTを突きつけられても理解の壁が高いと思いますので、今回は数式やコードを使わずにBERTに至るまでの流れを簡単に紹介したいと思います。 ※これらはあくまで私の理解であり

    自然言語処理でBERTまでの流れを簡単に紹介 - moriyamaのエンジニアリング備忘録
  • 1