タグ

2017年1月22日のブックマーク (2件)

  • 平均値 vs 中央値

    作者のページ ときどき所得などのデータを平均値(算術平均)のみで示している記事があります。しかし極端な外れ値があったり、著しく非対称だったりするデータは中央値で扱わないと実態がよく分からなくなってしまう場合があります。「平均所得600万円!」に騙されないように「平均値」と「中央値」の違いを実感しましょう。 追記1:以下の分布はLog-normalを仮定しているため必ず 中央値<平均値 です。そうじゃない分布も当然存在します。 追記2:このページの趣旨は「平均値だけ見ても実態がよく分からんこともあるので元の分布や他の統計量も気にしようね」ってことなので一々「最頻値も見なきゃ駄目だ」とかメールしてこなくていいです。 使い方:スライダをグリグリ動かして、それぞれの代表値を持つ分布の例を見てみよう。

  • 【基本】平均値・中央値・最頻値はどう使い分ける? | なかけんの数学ノート

    主なデータの代表値に、平均値、中央値、最頻値の3つがあります。どれも、データ全体の特徴を表すものですが、どうして代表値が3つもあるのでしょうか。「1個なら覚えるのも楽なのに!」と言いたい人もいるでしょう。また、結局どれを使えばいいのかわからないという人もいるかもしれません。 ここではそういった疑問について考えていきます。3つの代表値のメリット・デメリットや、使い分けについて考えていきます。 各代表値の得意・不得意 代表値とは、データ全体の特徴を表した値のことです。平均値は、「すべての数値を足して、数値の個数で割ったもの」、中央値は、「数値を小さい方から並べたときに、真ん中に来るもの」、最頻値は、「一番個数が多いもの」です。どれも「データを特徴づける値」ですが、それぞれの代表値には、得意・不得意があります。 データが次のようにきれいな左右対称の山の形に分布していた場合は、平均値も中央値も最頻

    【基本】平均値・中央値・最頻値はどう使い分ける? | なかけんの数学ノート