タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

MachineLearningとPythonに関するt28atenaのブックマーク (2)

  • B'zの歌詞をPythonと機械学習で分析してみた 〜LDA編〜 - 下町データサイエンティストの日常

    1. Part概要 前PartではB'zの歌詞を「TF-IDF」を用いた分析を行いました。 Partではトピックモデルの一つである「LDA」を用いた分析についてお話しします。 pira-nino.hatenablog.com 2. LDAとは 2.1 LDAのイメージ 先に簡単な説明をしてしまいます。 LDAは「たくさんの文書データから単語のグルーピングを行う」モデルです。 このグループ1つ1つを「トピック」と呼びます。 例えば、大量のニュース記事にLDAを適用する例を考えます。 ニュース記事データにLDAを適用した例 LDAでは「各トピック(トピック数は予め指定)における各単語の所属確率」が算出されます。 理論的なことはさておき、文書データから単語をいくつかのグループに自動で分けてくれる手法 との理解で大丈夫です。 よく勘違いされることとして以下の2点を示します。 トピック数(いくつ

    B'zの歌詞をPythonと機械学習で分析してみた 〜LDA編〜 - 下町データサイエンティストの日常
  • 文章をベクトル化して類似文章の検索 - Qiita

    Doc2Vecで類似文章を検索してみたので、実装を紹介します。 Doc2Vecとは コンピュータが自然言語を処理するためには、まず人間の言葉をコンピュータで扱える値にする必要があります。 単語の意味をベクトル化する手法としてWord2Vecが存在します。 詳しくはリンク先がとてもわかりやすいのですが、ざっくり言うと前後n単語のリストでその単語を表現します。 こうすることで、例えば「犬」と「」は同じような文脈で使われるため、似た「意味」であると考えることができます。 Doc2VecはWord2Vecを応用し、文章をベクトル化するものです。 実装サンプル 今回Doc2Vecを用いて実現するのは、以下の2つの機能です。 単語で文章を検索 類似文章の検索 サンプルとして、青空文庫の文章を使用しました。 なお、この記事で使用するコードはGitHubで公開しています。 (学習に使用した文章もzip

    文章をベクトル化して類似文章の検索 - Qiita
  • 1