タグ

ブックマーク / tjo.hatenablog.com (2)

  • 効果量(effect size)のはなし - 渋谷駅前で働くデータサイエンティストのブログ

    統計学的検定の話を始めたら自分の勉強の方が止まらなくなってしまったので(笑)、ついでにやってみようと思います。ちなみにこの記事は前回のやたらブクマを集めた記事の続きみたいなものです。 そもそもビジネスの現場ではどういう「レベル」の統計学を使うべきなのか - 六木で働くデータサイエンティストのブログ 例えば有意ではないという結果になった時にそれが「実際に帰無仮説が真」なのか「単にサンプルサイズが小さくて検出力が足りないだけ」なのか判断せよという問題。前者なら果てしなくサンプルサイズを大きくしても有意にはならないし、後者なら今度は効果量(effect size)のことを考えなければいけません。 というように前回の記事では検出力(statistical power)と効果量(effect size)について触れたんですが、タイムリーに先日の第36回TokyoRでその辺の話をしてきたので*1、そ

    効果量(effect size)のはなし - 渋谷駅前で働くデータサイエンティストのブログ
  • 「闇雲にPDCAサイクルを高速に回す」と場合によっては過学習して逆に怖いかもというお話 - 渋谷駅前で働くデータサイエンティストのブログ

    3年前にこんな話を書いたわけですが、皆さんご記憶でしょうか。 この当時は「平均への回帰」という言葉にその不毛さを託したわけですが、前回の記事に着想を得てもう少し今時っぽく論じることが出来るんじゃないかと思ったので、ちょっと書いてみようかと思います。 なお、言うまでもありませんが以下に示す例は完全に単なるシミュレーションであり、特定の事例を意味するものではありません*1。過去にデータ分析業界の内部で見聞された数々の事例の最大公約数的な部分をベンチマークとしてまとめたものとご理解下されば幸いです。またシミュレーション自体も特に数理的な厳密さを期したものではありませんので、そこもご了承あれ*2。 ビジネスの現場でよくある光景 一般に「PDCAサイクルをとにかく速く回す」のがビジネスを成功させる近道だと言われるわけです。そこで、こんなケースを考えてみます。設定としては、何かしらのeCommerce

    「闇雲にPDCAサイクルを高速に回す」と場合によっては過学習して逆に怖いかもというお話 - 渋谷駅前で働くデータサイエンティストのブログ
  • 1