なぜAIを考える時にベクトルを「矢印」と捉えるべきではないのか。 実際には矢印として考えたほうがいい例外もあります。 たとえば、特徴空間の任意の2点の引き算や足し算をするとき。 矢印のメタファーが使えます。 あるベクトルAから別のベクトルBを引いたベクトルCは、BからAへ伸びる矢印としてイメージするのは大丈夫です。 この性質を利用して、プロンプト芸が成り立つケースもあります。 たとえば画像生成系AIで使われるネガティブプロンプトはそういう性質を使っています。 しかし、根本的に、我々が普段イメージする二次元の矢印で示されるベクトルと、十次元以上の高次空間のベクトルは、全く異なる性質をもっていると考えるべきです。低次のベクトルと、高次のベクトルでは、共通する要素はあるけれども、それはごく一部に過ぎないということです。 例を挙げましょう。 1次元のベクトルは、正負の向きと大きさを持ちます。 数直