タグ

algorithmとpythonに関するtarchanのブックマーク (3)

  • Pythonコードを35000倍に高速化したい

    はじめに Pythonは世界的にも人気のあるプログラミング言語ですが、実行速度については課題があります。Pythonの実行速度を高速化したい、という要求は根強く、これまでにも様々な処理系が開発されています。 この記事はPythonで書かれたコードを35000倍に高速化するにはどのような方法があるかについてまとめたものです。 この記事は: Pythonで書かれたアルゴリズムを35000倍に高速化する 事前コンパイル、並列化、SIMD演算を駆使する 最終的に44000倍まで高速化できた なぜ35000倍? 2023年5月2日にModular社よりPythonの使いやすさとC言語の性能を兼ね備える新しいプログラミング言語、Mojoの開発について発表がありました。低レベルのハードウェア向けにコンパイル可能なこと、文法的にはPythonを踏襲しており、既存のPythonライブラリを利用可能であること

    Pythonコードを35000倍に高速化したい
  • あらゆる数独パズルを解く

    Peter Norvig / 青木靖 訳 このエッセイでは、 あらゆる数独パズルを解くという問題に取り組む。制約伝播と探索という2つのアイデアを使うと、ごく簡単に解けるということがわかる(主要なアイデアはコードにして1ページたらずで、補足的なコードが2ページある)。 数独の記法と予備概念 最初に記法をいくつか決めておこう。数独パズルは81個のマス(square)からなる盤面を使う。数独ファンの多くはカラムを1-9で、行をA-Iでラベル付けしており、カラム、行、ボックスのような9個のマスの集まりをユニット(unit)と呼び、ユニットを共有するマスをピア(peer)と呼んでいる。パズルではマスのいくつかが空いており、他は数字が入っている。パズルの目的はこうだ。 それぞれのユニットのマスが1から9の数字の順列によって埋められるようにする。 つまり、1つのユニットに同じ数字が2度現れてはならず、そ

  • 自然言語処理は Python がいちばん - 武蔵野日記

    現在大学1年生の人で3年後には NAIST に (というか松研に) 来たいという人から「どんなプログラミング言語やっておくといいですか」と質問されたりするのだが、なかなか答えるのは難しい。自分は PerlPython がメインでときどき C++/C# を使ったりするのだが、どれが一番いいかはなんとも言えないので、自然言語処理以外に転向する可能性も考えると、C とか C++ とか Java とか(授業でそちらをやるのであれば)を最初の武器に選んだ方がいいのでは、と思ってはいる。 そんなこんなで最近 Hal Daume III (機械学習を用いた自然言語処理では非常に有名な人) のブログで Language of Choice というタイムリーなエントリーが出ていたので、紹介すると、「それなりに大きな自然言語処理のプロジェクトでどのプログラミング言語を使うのか」というアンケート結果が出

    自然言語処理は Python がいちばん - 武蔵野日記
  • 1