ブックマーク / zenn.dev/knowledgesense (7)

  • LLMで学習不要のレコメンドエンジンを実現

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、LLMを使用したレコメンドエンジン作成のフレームワークについて、簡潔に解説していきます。 サマリー LLMを使用したレコメンドエンジン作成のフレームワーク(以降、「提案されたレコメンドエンジン」)は、Amazonの研究チームによって発表された論文で提唱されました。 このレコメンドエンジンの特徴は、ファインチューニングを利用していないLLMとユーザーの行動(商品のクリックなど)情報を元に、レコメンドの性能を継続的に改善できる点です。ユーザーの行動をもとに、LLMにより関連性の高い商品を推測させることでレコメンドの性能を上げています。 より詳細な解説は以下の記事、もしくは論文を参照してください。

    LLMで学習不要のレコメンドエンジンを実現
  • テキスト抽出不要のRAGを実現するColPali

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、画像の情報をそのままベクトルデータにして検索する手法、ColPaliについて解説します。 サマリー 通常、RAGでは文書データからテキストを抽出して、その文字をベクトルデータに変換します。しかしColPaliは、文書データを画像として認識してベクトル化を行います。画像として保管することでテキスト化できない情報を扱うことができます。他にもベクトルを複数に分解することで精度を改善し、テキストの抽出が必要ないことからデータ保管時のコストの大幅な低減などのメリットを享受できます。 PDFのデータを保管する際には、ColPaliモデルに正規化したPDF画像を入力として渡し1024個の128次元ベクトルを

    テキスト抽出不要のRAGを実現するColPali
  • RAG vs ファインチューニング(コーディング性能で比較)

    はじめまして。ナレッジセンスの門脇です。生成AIやRAGシステムを活用したサービスを開発しています。記事では、「RAG vs ファインチューニング」について、DSL(ドメイン固有言語)をコーディングする性能という観点から比較した論文を、ざっくりまとめます。 この記事は何 この記事は、RAG vs ファインチューニングに関する論文[1]を、日語で簡単にまとめたものです。 「RAG vs ファインチューニング」の論文は、他にもあります。例えば、時事問題などのシンプルな知識の質疑応答であれば、RAGの方が優れています。[2] 今回の論文では、「ドメイン固有言語(DSL)をコーディングする性能」をに焦点を当てて比較しています。一見するとファインチューニングの方が有利そうなタスクについて比較しているのが面白い点です。 題 ざっくりサマリー この論文では、RAGとファインチューニングの性能比較を

    RAG vs ファインチューニング(コーディング性能で比較)
  • Pinterest社で運用されているText-to-SQLを理解する

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 記事では、Pinterest社のエンジニアチームが紹介していた、実運用環境におけるText-to-SQLの構築方法に関する記事の紹介をします。 Text-to-SQLを実際の運用レベルで実現するための手法が解説されているので、その内容を解説、そして考察していきたいと思います。 なおこの手法には特に名前などは設定されていなかったので、以降Pinterest社の提案するText-to-SQLPinterest Text-to-SQLと呼称します。 サマリー Pinterest Text-to-SQLは、RAGのシステムを最適化することで 検索に必要なTableのより正確な抽出 実際に使用されている値に準拠

    Pinterest社で運用されているText-to-SQLを理解する
  • ベクトルデータの容量を96%削減するBinary Embedding

    導入 こんにちは、株式会社ナレッジセンスの須藤英寿です。普段はエンジニアとして、LLMを使用したチャットのサービスを提供しており、とりわけRAGシステムの改善は日々の課題になっています。 RAGのシステムの中では、どんな情報にアクセスするかを決定する際に、Embeddingと呼ばれる文章をベクトル化する技術が使用されています。そして多くの場合では小数(float)の多次元ベクトルが採用されています。 しかし、Embeddingの中には各ベクトルの数値を1Bitのデータとして扱うBinary Embeddingというものが存在します。 記事では、Embeddingの手法の一つであるそのBinary Embeddingについて解説と検証を行います。 サマリー Binary Embeddingを採用することで以下のような効果を得ることができます。 保管するベクトルデータの容量を96%ほど削減で

    ベクトルデータの容量を96%削減するBinary Embedding
  • RAGに質問分類させる「Adaptive-RAG」の解説

    記事では、「Adaptive-RAG」についてざっくり理解します。軽めの記事です。 株式会社ナレッジセンスでは普段の業務で、生成AIやRAGシステムを活用したサービスを開発しています。 この記事は何 この記事は、Adaptive系で現在、最も「コスパ」が良いとされる「Adaptive-RAG」の論文[1]について、日語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 題 ざっくりサマリー RAGの回答精度を高めるための手法です。韓国科学技術院(KAIST)の研究者らによって2024年3月に提案されました。「Adaptive-RAG」という手法を使うメリットは、ユーザーからの入力としてシンプルな質問・複雑な質問、どちらも想定される場合に、「そこまで遅くなりすぎずに、ある程度の回答精度がでる」という点

    RAGに質問分類させる「Adaptive-RAG」の解説
  • RAGを複雑な質問に強くする手法「CoA」について

    記事では、「Chain-of-Abstraction (CoA) Reasoning」についてざっくり理解します。軽めの記事です。 株式会社ナレッジセンスでは普段の業務で、生成AIやRAGシステムを活用したサービスを開発しています。 この記事は何 この記事は、最近聞くようになった「Chain-of-Abstraction (CoA) Reasoning」の論文[1]について、日語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 題 ざっくりサマリー LLMが外部ツールを使って回答を生成するときの、回答精度を高める手法についての論文です。Metaの研究者らによって2024年1月に提案されました。「Chain-of-Abstraction (CoA)」という手法を使うメリットは、RAGに応用することで

    RAGを複雑な質問に強くする手法「CoA」について
  • 1