本プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する本格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。
Raspberry Pi4へのディープラーニング環境セットアップに関して 最新のラズパイ4でのディープラーニングの開発環境構築に関して、以下記事でまとめています。今から、ラズパイ4で最速で環境構築したい方は、以下記事参照下さい。ラズパイ3にも対応しています(同じ要領でセットアップ可能です)。 これ以降は、古い情報が含まれていることご了承ください。 Raspberry PiとTensorFlowでディープラーニング 最近、人工知能とかディープラーニングに関して興味を持っていて、以下のような記事でまとめたりしました。 ただ、本やネットの記事を見ただけだと、あまり頭の良くない自分には全然ピンとこないというのが正直なところです。そこで、今までChainerという日本製のディープラーニングのフレームワークを使って色々実験してみたのですが、サンプルを動かすことはできても、それ以上のことが何もできなくて
Google から正式に Tensorflow が Windows 対応して GPU が使えるとのアナウンスがありました。 https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html セットアップ環境 OS) Windows 10 Pro GPU) NVIDIA GeForce GTX 960 この環境で TensorFlow を試しみたいと思います。なるべくDドライブにセットアップするようにしています。 CUDA と cuDNN をインストール CUDA Toolkit 8.0 https://developer.nvidia.com/cuda-downloads Operating System: Windows Architecture: x86_64 Version:
ディープラーニングを使ってキュウリの仕分け(選果とも言う)をしてみました。 今回試してみたのは、TensorFlowのチュートリアル『Deep MNIST for Experts』の畳み込みニューラルネットワークに少し手を加え、キュウリの仕分け作業をやらせてみるとう試みです。 キュウリをWebカメラで撮影した画像により、仕分けを行います。 キュウリの仕分けとは キュウリの仕分けとは、出荷する際に傷や病気があるものを弾いたり、形や色合い、大きさによりランク別に選別したりする作業です。 選別には、とくに統一規格があるわけではなく、各農家によって独自ルールがあったりします。 (主に、出荷先の希望、市場での値の付き方、作業効率などにより決めていると思われる) さて、うちの仕分けルールは、だいたいこんな感じになります。(実際にはもう少し細かいのですが…) 2L〜2S:良品。色艶がよく、比較的まっすぐ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く