本記事では,Amazon SageMakerを用いて機械学習モデルの学習・デプロイを行うための必要最低限の知識を説明します.普段,仕事や学業で機械学習プロジェクトに携わっているけどAWSにあまり馴染みのないという方のお役に立てば幸いです. また本記事は,AWSの3daysインターンシップで取り組んだことを題材に,インターンシップでチームを組んだ中田勇介さん(nakata_yusuke)と一緒に作成しました.コードはgithub上で公開しています. Amazon SageMakerとは Amazon SageMakerとは,機械学習モデルを高速に開発・学習・デプロイするためのマネージドサービスです.よく利用されるEC2は,主にインフラ(やフレームワーク等)を提供するためのサービスなので,EC2の1つ上のレイヤのサービスとなります. Amazon SageMakerを利用することで,以下のよう
![[チュートリアル] Amazon SageMakerでの学習・デプロイ - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/1530f964b0604f290d483acb4749f648f35e524e/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fcdn.qiita.com%252Fassets%252Fpublic%252Farticle-ogp-background-412672c5f0600ab9a64263b751f1bc81.png%3Fixlib%3Drb-4.0.0%26w%3D1200%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk3MiZoPTM3OCZ0eHQ9JTVCJUUzJTgzJTgxJUUzJTgzJUE1JUUzJTgzJUJDJUUzJTgzJTg4JUUzJTgzJUFBJUUzJTgyJUEyJUUzJTgzJUFCJTVEJTIwQW1hem9uJTIwU2FnZU1ha2VyJUUzJTgxJUE3JUUzJTgxJUFFJUU1JUFEJUE2JUU3JUJGJTkyJUUzJTgzJUJCJUUzJTgzJTg3JUUzJTgzJTk3JUUzJTgzJUFEJUUzJTgyJUE0JnR4dC1hbGlnbj1sZWZ0JTJDdG9wJnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9NTYmcz03YzBkZjQ1OGU5MTU1MzBlMzc4ZDY2NWE4NTI0MDA1Mw%26mark-x%3D142%26mark-y%3D57%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZoPTc2Jnc9NzcwJnR4dD0lNDBrdTI0ODImdHh0LWNvbG9yPSUyMzFFMjEyMSZ0eHQtZm9udD1IaXJhZ2lubyUyMFNhbnMlMjBXNiZ0eHQtc2l6ZT0zNiZ0eHQtYWxpZ249bGVmdCUyQ3RvcCZzPTAxY2YzMTdkOTZlNjE3NmEyZWQ0NjVlMzY1ODlmZWE4%26blend-x%3D142%26blend-y%3D486%26blend-mode%3Dnormal%26s%3D0f94ed1bb51b8644320bf7fc374a1713)