タグ

RNNに関するtjnsysのブックマーク (7)

  • Recurrent Neural Networkとは何か、他のニューラルネットワークと何が違うのか

    筆者が所属するリクルートテクノロジーズでは機械学習をはじめとしたデータ解析を用いた社内向けソリューションをAPIで提供するプロジェクト「A3RT(Analytics And Artificial Intelligence API via Recruit Technologies)」が2016年に発足し、自然言語処理や画像解析、レコメンドなどの分野において研究開発と実践への導入が盛んに行われています。 A3RTにおいて、筆者が取り組んでいる課題の1つとして「校正」があります。 リクルートはもともと紙を媒体とする情報誌を発行している会社で、ネット化が進んだ現在でも大量の求人票や記事を日々作成しています。作成される原稿はカスタマーとクライアントをつなぐ重要な媒体であり、そこに間違いがあると大きな機会損失となります。そのため、現状では人手でその原稿を校正するため膨大なコストと時間がかかっています。

    Recurrent Neural Networkとは何か、他のニューラルネットワークと何が違うのか
  • Mojiブログ – 自然言語処理、ディープラーニング分野中心につらつらと

    再帰型ニューラルネットワーク(RNN)は自然言語処理の分野で高い成果をあげ、現在最も注目されているアルゴリズムの一つです。しかしながら、その人気が先走りして実際にRNNがどのように動くのか、構築するのかを解説する書籍は限られているように思います。この講義シリーズはそのために書きました。下記のように構成する予定です。 続きを読む → 2010年にGoogleやFacebookといった名だたる米国IT企業がAI/ディープラーニングの研究機関を設立するなど大規模な投資が話題となり、2015年にはAIの実用化が格化しました。Facebookの Moments やSkypeの Translator 、そして Google Photos など米国IT企業がAIを活用したサービスを公開し始め、トヨタやリクルートなど日企業のAI/機械学習の研究機関設立の発表も相次ぎました。このトレンドはやはり、ここ数

  • リカレントニューラルネットなぜ強い? - 武蔵野日記

    午前中は言語学習支援・機械翻訳の進捗報告。それぞれ新しい研究で各自色々自分で進めているので、話を聞くのは楽しいのだが、年内に実験結果が出るのか? という不安がそこはかとなくある。当は、こんな締め切りに追われるような感じではなく、ゆっくりできるといいと思うのだが、締め切りに追われている方が進むという不思議(いや、あまり不思議ではないか)。 お昼は論文紹介。 Tang et al. Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. EMNLP 2015. を紹介してもらう。感情極性分析では、頑張って素性エンジニアリングした SVM と、適当に作った畳み込みニューラルネットワークが同じくらいの性能になるらしいのだが、リカレントニューラルネットワーク(普通の RNN から、LST

    リカレントニューラルネットなぜ強い? - 武蔵野日記
  • 【エヴァンゲリオン】アスカっぽいセリフをDeepLearningで自動生成してみる - Qiita

    はじめに エヴァンゲリオン20周年おめでとうございます 加えて、アスカの誕生日もおめでとうございます。(4日遅れ) Twitter Bot等でも使われている、文章の自動生成を流行りのDeepLearningの1種であるリカレントニューラルネットワーク(以下:RNN)を使ってやってみました。 データ集め 何はなくともまずはデータが無いと始まりませんね。 書き起こしも覚悟してましたが、アニメ全セリフをまとめてあるありがたいサイトが有りました。感謝。 こちらから全セリフを抽出しました。 セリフのフォーマットはこんな感じで、キャラ名 「セリフ」になってます。 放送「日、12:30分、東海地方を中心とした関東中部全域に特別非常事態宣言が発令されました。住民の方々は速やかに指定のシェルターに避難してください」 放送「繰り返しお伝えいたします…」 ミサト「よりによってこんな時に見失うだなんて、まいった

    【エヴァンゲリオン】アスカっぽいセリフをDeepLearningで自動生成してみる - Qiita
  • ChainerとRNNと機械翻訳 - Qiita

    自然言語処理とニューラルネット ここ数年で、自然言語処理の分野でもニューラルネットが非常に頻繁に使われるようになってきました。 自然言語処理で主に解析対象となるのは単語の配列や構文木などで、これらの内包する情報を表現するためにrecurrent neural network1やrecursive neural network1などに基づくモデルが頻繁に使われます。これらの最大の特徴はニューラルネットがある種のデータ構造を持っているという点で、1レイヤあたりのノードはそれほど多くない代わりにネットワークの接続が複雑で、しかも入力されるデータごとにネットワークそのものの形状が変化するという特徴があります。このため、伝統的なfeedforward neural networkを前提としたツールキットでは構築が難しいという問題がありました。 Chainerは、そのような問題を概ね解決してしまう強力

    ChainerとRNNと機械翻訳 - Qiita
  • 長文日記

    長文日記
  • 長文日記

  • 1