タグ

algorithmと技術に関するtk60qtのブックマーク (2)

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • 1/1000の圧縮率を目指す次世代動画像圧縮技術の行方 - A Successful Failure

    現在最高の圧縮効率を誇るAVC/H.264は1GbpsのフルHDTVを10Mbps以下に圧縮できる。1/100以上の圧縮率ということになるが、次世代beyond HDTVの8k4kの空間解像度、60〜300fpsの時間解像度、マルチスペクトルの色表現、10〜16bit/pelの画素値深度、複数視点を考えると情報量は16〜200Gbpsとなるため、ビットレートを100Mbpsまで許容したとしても、圧縮率をさらに10倍は引き上げる必要がある(1/1000以上)。 上記の要求に対し、短期的には従来のAVC/H.264で用いられている動き補償予測とDCTを組み合わせたMC+DCTの枠組みを維持し、改良を積み重ねて圧縮率向上を図るアプローチが取られるが、長期的には従来の枠組みに囚われない新たなブレークスルーが必要となる。エントリでは、情報処理6月号の解説*1より、画像圧縮技術のブレークスルーの萌芽

    1/1000の圧縮率を目指す次世代動画像圧縮技術の行方 - A Successful Failure
  • 1