タグ

数学に関するto-ke-iのブックマーク (12)

  • 数学は哲学? - Sokratesさんの備忘録ないし雑記帳

    「大学で数学は哲学になる」と主張する人がいる*1.特におもしろくもないし,適切な比喩とも思えないんだが,一部の頭がフワフワしている層や視野の狭い人々,数学を神聖なものに祭りあげたい何とかコミュニケーターなどには受けるらしく,ごくまれに信じている人がいる*2. ただ,実際問題,違いを説明しろと言われるとワリと困る.「リンゴとゾウの違いは何ですか」と聞かれているようなものなので,当然なのだが,「いや,見た目も大きさも全然違うじゃん」と言いたくなる.問題は「リンゴとゾウ」なら一目瞭然なのだが,「学問」は目に見えないので,どちらもわかっていない人には誰かが説明しないと違いがはっきりわからない点にある*3.「リンゴの触り心地はツルツルだし,ゾウも(牙が)ツルツルだから,きっと似たようなものだろう」と言う盲人のようなものである*4. この記事の目的は「数学と哲学の違い」という直観的には明らかだが,ちゃ

    数学は哲学? - Sokratesさんの備忘録ないし雑記帳
  • 畳み込みの仕組み | Convolution

    確率から画像処理まで、離散畳み込みと高速フーリエ変換(FFT) 激ムズ数え上げパズルと驚きの解法 https://youtu.be/FR6_JK5thCY フーリエ変換の解説動画 https://youtu.be/fGos3wrKeHY 【注釈】 整数のかけ算のアルゴリズムについて、FFTの"straightforward"な適用はO(N * log(n) log(log(n)) )の実行時間になる。log(log(n))の項は小さいが、2019年になってHarvey and van der Hoevenがこの項を取り除くアルゴリズムを発見した。また、O(N^2)を、必要な計算量がN^2と共に大きくなると表現したが、厳密にはこれはTheta(N^2)が意味するところである。 O(N^2)は計算量が高々N^2の定数倍になるという意味で、特に、実行時間がN^2項を持たないが有界であるアル

    畳み込みの仕組み | Convolution
  • 【Python】プログラムでフーリエ変換を理解しよう!【FFT, 標本化定理, ナイキスト周波数】 | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]

    こんにちは。早く業務に慣れたい開発チーム入社1年目の髙垣です。 急ですが皆さん。ふと、音をフーリエ変換したい時ってありませんか? ありますよね。 でも、「フーリエ変換って学校で計算式で習ったけど、結局は何をしているんだ?」となることありませんか? そこで今回は計算式なんてほっといて、Pythonを使ってフーリエ変換が何をやっているのか体験してみましょう! 環境構築 下記リポジトリをクローンしてください https://github.com/takaT6/fft-tutorial クローンができたら下記のライブラリをインストールしてください↓ pip install numpy matplotlib japanize_matplotlib japanize_matplotlib はmatplotlibに日語を書き込めるようにするライブラリです。 日語化をするにはフォントを入れたり、設定フ

    【Python】プログラムでフーリエ変換を理解しよう!【FFT, 標本化定理, ナイキスト周波数】 | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]
  • 畳み込みの視点から見たforall(every)とexists(some): 空集合に対するforallは常にtrueになる - Lambdaカクテル

    こういうツイートが話題になっていた。 「配列のすべての要素が条件を満たすならtrueを返す」関数を定義するとき、空の配列を渡したらfalseを返すかtrueを返すかが、良いプログラマかどうかの一つの境目だ— ふみ (DJ Monad) (@fumieval) 2023年5月29日 つまりScalaで言うと次のようなコードが何になるか、というものである。 val xs = Seq.empty[Int] xs.forall(_ == 42) 結論から言うと、このような関数は常にtrueを返す。 なぜだろう?その理由をこれから説明する。 ちなみに他に以下のような意見があった: 仕様による 例外を投げるべき いずれもまぁありえなくはないが、やめておいたほうが良いと思う。もし仮にfalseを返すような仕様があった場合、それは数学から乖離しているのでいずれ仕様内部で矛盾する可能性が高いし*1、最終的に

    畳み込みの視点から見たforall(every)とexists(some): 空集合に対するforallは常にtrueになる - Lambdaカクテル
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…

    150 分で学ぶ高校数学の基礎
  • ABC is Still a Conjecture | Not Even Wrong

    tar0log.tumblr.com tar0.tumblr.com | taro.haun.org | @tar0zzz | @4bungi | @4bungi | suzuri Tags: abc, eht, life, mini, prfm, photo, ringo, sci, writing Feb 21, 2023: My blog has moved to 4bungi.jp/blog/. I will keep this tumblr so the links will not be broken, but I am also copying the articles I have posted here to 4bungi.jp. Life is like riding a bicycle. To keep your balance you must keep movin

  • 自分のような専門外の人間が「数学書」を読む時のメモ|きぬいと

    2024/04/30追記 投稿後2年以上経つが、未だに「いいね」を頂戴することを嬉しく思っている。これだけ読まれると読みにくい箇所や誤字が存在することはやや誠実さに欠けるように思われたので、適宜修正した。 また、ヘッダーを追加した(@dharmazeroalpha 氏より拝借)。 さらに、参考文献を追加した(Polya, 竹内)。 導入:執筆の背景修士(文学)が数学を勉強する必要性に駆られている。 数学の書籍を読む方法について、学生時代の講義や自主ゼミによる遠い記憶と、数学徒の見よう見真似でしか理解できていないので、参考のために各大学の教員の方針がまとめられた情報も組み合わせて整理し共有する。 なお、基的には僕の僕による僕のためのメモなので、他の人の参考になるかどうかは知ったことではない。 目的統計検定1級のために以下の書籍を理解を伴って「読了」するための方法として、数学書の読み方の基

    自分のような専門外の人間が「数学書」を読む時のメモ|きぬいと
  • アルゴリズムと数学の本を書きました - E869120's Blog

    1. はじめに こんにちは、はじめまして。東京大学 1 年生の米田優峻(E869120)と申します。私は競技プログラミング趣味で、AtCoder や国際情報オリンピックなどの大会に出場しています1。2021 年 11 月時点で、AtCoder では赤色(レッドコーダー)です。また、2020 年以降、アルゴリズムを学べる以下のようなコンテンツや資料を作成してきました。 レッドコーダーが教える、競プロ上達ガイドライン 競プロ典型 90 問 50 分で学ぶアルゴリズム さて、このたびは技術評論社から、書籍を出版させていただくことになりました2。アルゴリズムと数学が同時に学べる新しい入門書です。 「アルゴリズム×数学」が基礎からしっかり身につく - amazon 発売日は今年のクリスマス、2021/12/25 です。電子書籍版も同時期に出る予定です。記事では、このの内容と想定読者について、

    アルゴリズムと数学の本を書きました - E869120's Blog
  • GHCの型レベル自然数を理解する - Qiita

    Haskellの多相型システムでは、型をパラメーターとして取る型を定義することができる。この拡張として、GHC拡張の型レベル自然数を使うと、自然数をパラメーターとしてとる型を定義することができる。 型レベル自然数を使うには、GHC拡張の DataKinds を有効にして、 GHC.TypeLits モジュール(もしくは GHC.TypeNats モジュール)をimportする。 この記事で説明するのは基的に、GHC組み込みの Nat カインドを持つ型レベル自然数である。データ型として帰納的に定義される自然数については、比較のために紹介する程度にとどめる。 初級編 まずは、型レベル自然数の基的な使い方を紹介する。 雰囲気を掴む 小難しい話に入る前に、GHCの型レベル自然数の雰囲気を見ておこう。 {-# LANGUAGE DataKinds #-} {-# LANGUAGE ScopedT

    GHCの型レベル自然数を理解する - Qiita
  • 数学を勉強する時におすすめのツール|hanaori

    少し前に高校数学をやり直したのですが、徐々に勉強スタイルが整ってきたので使って便利だったツールをまとめておこうと思います。 今から勉強はじめようと思ってる方や、もうすでにはじめられてる方の参考になればうれしいです。 GeoGebra Graphing Calculator 数式を入力するとグラフを描いてくれます。 Webブラウザやスマホ・iPadのアプリでも使用でき、ぱっとグラフの形を確認したいときにとっても便利です。 Webブラウザや iPad などでも使用できます。 Wolfram Alpha図を描いてくれるところは GeoGebra に似ていますが、こちらは入力された数式などに対して構造化されたデータを用いて適切な結果を返してくれる検索エンジンのようです。 いろんなWebページをインデックスして検索結果を返す Google などとはまた違っておもしろいですね。 GeoGebra は非

    数学を勉強する時におすすめのツール|hanaori
  • 「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】

    このスライドでは, ・フーリエ級数 ・複素フーリエ級数 ・フーリエ変換(連続) ・離散フーリエ変換(DFT) ・高速フーリエ変換(FFT) を解説しています. ブログはこちら 【フーリエ解析05】高速フーリエ変換(FFT)とは?内側のアルゴリズムを解説!【解説動画付き】 https://kenyu-life.com/2019/07/08/what_is_fft/ Twitter → https://twitter.com/kenyu0501_?lang=ja Youtube → https://youtu.be/zWkQX58nXiw

    「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】
  • 表現のための数学 #0 - Imaginantia

    頭の中で思った作りたいものを、実際に見える形にするには「表現する (Represent)」という作業が必要になる。 そしてそれをコンピュータで作るには、コンピュータが理解できる「表現 (Representation)」を構成しなくてはならない。 というわけで、思ったものを → 表現する方法、について。特に空間の扱いについて、書いていく。 こんな感じで引用チックな文章は補足用なので読まなくてもよい。 この文章は「ものを表現したい人」のための文章であり、mathematician向けのものではない。 とはいえ勿論誤りは訂正したいので何かあれば twitter:@phi16_ の方に連絡してほしい。 空間と変換 形在るものには空間的情報がある。だから私達は「空間の扱い方」を学ぶ必要がある。 特に、多くの空間は単純な空間の変形によって構成されているから、「空間を変形する方法」を知る必要もある。 「

  • 1