「基本から学ぶテーブル設計 超入門!」 https://modeling-how-to-learn.connpass.com/event/242944/ の発表資料。 - 2つの設計スタイルの違いを理解する - 何を記録するか(資源・活動・当事者・規程) - どう記録するか(テーブルの役割…
「基本から学ぶテーブル設計 超入門!」 https://modeling-how-to-learn.connpass.com/event/242944/ の発表資料。 - 2つの設計スタイルの違いを理解する - 何を記録するか(資源・活動・当事者・規程) - どう記録するか(テーブルの役割…
株式会社ラクーンホールディングスのエンジニア/デザイナーから技術情報をはじめ、世の中のためになることや社内のことなどを発信してます。 パフォーマンス勉強会OracleデータベースMySQLInnoDB こんにちは、羽山です。今回はOracleデータベースのチューニングで少し踏み込んだ内容です。途中で比較対象としてMySQLも登場します。 日頃からSQLチューニングの機会があってそれなりに得意としているのに、それでもなぜかパフォーマンスがでないSQLに悩んだ経験はありませんか? 謎の遅い現象は特に大規模データベースになってくると発生しがちなのですが、速い場合も遅い場合も必ず理由があります。そこで本記事ではデータベースのチューニングにおいて意外と見落とされがちなローレベルな部分に着目して、さらに一歩上のパフォーマンスチューニングに必要な知識を解説します。 この記事を書くきっかけとなったのは私た
皆さんこんにちは、エンジニアの西尾です。 新しい機能・サービスを開発する際、私は特にデータベース設計に気をつかいます。 データベースはシステムの土台です。 土台が不安定だと、その上に積み上げていくアプリケーションコードがいびつなものになり、つらい思いをします。 また、一度動き出してしまったシステムのデータベース設計を変えるのは、容易なことではありません。 データベース設計には”これだ!”という正解はないと思っています。 サービスの特徴、システムの性質、toB向け/toC向け、Readが多い・少ない、Writeが多い・少ない。 その他もろもろの背景により、データベース設計の仕方も変わってきます。 このテーブルは正規化していないから駄目だ、この設計はいわゆるポリモーフィック関連だから使ってはいけない、などということはありません。 アンチパターンと呼ばれるものも時と場合によっては正解になります。
What is EdgeDB? EdgeDBとは、次世代データベースと言われている新しいデータベースです。 公式サイト曰く、 NoSQLデータベースのシンプルさを持つ リレーショナルモデルの強力なクエリー(EdgeQL)やGraphQLで問い合わせ可能 厳密さ、一貫性、パフォーマンスを兼ね備えている とのことです。 PostgleSQLをベースとして構築されており、データ整合性が保証されていたり、 構造化された複雑なデータを扱うことができたりもします。 また、EdgeDB独自の高度なクエリが使えたりするなど、 NoSQLデータベースとRelationalデータベース両方の特徴をもったデータベースになります。 なお、EdgeDBはApache2ライセンスで開発されており、先日alpha版がリリースされました。 EdgeDB Features 公式では、EdgeDBは下記の特徴を持つと記述して
1. あなたが知らない リレーショナルモデル @dbtech showcase tokoy 2014 奥野 幹也 Twitter: @nippondanji mikiya (dot) okuno (at) gmail (dot) com 3. 自己紹介 ● MySQL サポートエンジニア – 日々のしごと ● トラブルシューティング全般 ● Q&A回答 ● パフォーマンスチューニング など ● ライフワーク – 自由なソフトウェアの普及 ● オープンソースではない ● ブログ 今日は個人として 参加しています。 – 漢のコンピュータ道 – http://nippondanji.blogspot.com/
こんにちは、すっかり秋ですね!@yone098 です。 みなさんDBの設計してますか? DB設計時のサイズ見積り 以前はてなダイアリーで書いた記事は5年前のものであり、リンクが切れているものがあるので最新版として MySQL, PostgreSQL, Oracle, SQLServer におけるDB設計時のサイズ見積りをまとめ直しました。 URL内のバージョン表記を変えると以前のバージョンの情報になります。 MySQLは、あまり情報に変化は無かったので Excel でマクロなどを作成して自社で自動算出出来るようにするのが良いと思います。 データタイプごとに必要な要求ストレージが決まっているのでレコードサイズが決まり、あとは要件次第で何レコードになるかを予測します。 データタイプごとに必要な記憶容量 テーブルの最大サイズ関連 http://dev.mysql.com/doc/refman/5
前書き - インデックスの作成はなぜ開発者のタスクなのか インデックスの 内部構造 - インデックスは何に似ているか インデックス リーフノード - 二重連結リスト 検索 ツリー(Bツリー) - バランス木 遅いインデックス パートI - インデックスを遅くする2つの原因 where 句 - 検索のパフォーマンスを改善するためにインデックスを作成 等価 演算子 - 一致するキーの検索 プライマリキー - インデックスの使い方を確認 複合インデックス - 複数列に対するインデックス 遅いインデックス パートII - 前の問題点が再び 関数 - where句の 中での関数 大文字・小文字を区別する 検索 - UPPERと LOWER ユーザ定義 関数 - 関数インデックスの制限 インデックスの作り過ぎ - 冗長性の排除法 パラメータ化 クエリ - セキュリティとパフォーマンスのために 範囲 検
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く