タグ

ブックマーク / hillbig.cocolog-nifty.com (5)

  • C++の便利ツール・ライブラリ - DO++

    フルタイムで働きはじめて4ヶ月。 いろんなことがありました。 今日はインターンが来ているということもあり日頃のC++コーディングライフの中で大変重用しているツールを紹介します。といってもどれも有名なツールでググれば解説がでてくるとは思いますので、一言ずつだけ紹介してみます。みなさんも何かよさげなライブラリ・ツールがありましたら教えてください。 - valgrind/callgrind/cachegrind プログラムの実行結果を解析するツール群。まぁ、王道であえて紹介する必要はないかもしいませんが.。valgrindはプログラムのどこかでメモリが漏れているかどうかのチェックに使います.コードのどの部分で確保した領域がどこで漏れているかまで追跡することができます valgrind --leak-check=full command プログラムのどのが計算量的にボトルネックになっているかを調べ

    C++の便利ツール・ライブラリ - DO++
  • DO++ : 部分文字列の話

    ここしばらく、部分文字列の統計量を利用した機械学習やデータマイニングをやっている。そこの話からちょっと抜粋。 長さnの文字列T[1,...,n]が与えられた時、T中に出現する部分文字列T[i...j] (1≦i≦j≦n)の数はn個の中からiとjの2箇所を選ぶのでO(n^2)個ある。例えば、n=10^6(1MB)だったら、部分文字列の数は約10^12個(1T)と非常に大きい。 しかし、これらの部分文字列の出現位置は同じである場合が多い。例えばT="abracadabra"であれば、"abra"と"abr"の出現場所は1番目と8番目であり、全く同じである。 では出現位置(部分文字列の左端を出現位置とする)が全く同じであるような部分文字列をまとめてグループにした場合、グループの数はいくつになるのだろうか。 これは接尾辞木(wikipedia 授業の資料)を知っているなら簡単に説明できる。 Tに対

    DO++ : 部分文字列の話
  • DO++ : 透過的データ圧縮

    可逆データ圧縮分野で、現在研究が盛んな分野の一つが、データを圧縮した状態のまま定数時間でランダムアクセスをサポートするデータ圧縮方式です(word RAMモデルでO(log n)サイズの復元が定数時間)。 これは、データをあたかも圧縮していないかのように扱えるため、透過的データ圧縮/構造と呼ばれています(英語だとまだ決まってない?)。 例えば1GBのデータを圧縮した状態で、途中300MB目から4Byteだけ復元しようというのが定数時間で実現できるわけです。これは理論的にもかなり強いことをいっていて,例えば今あるデータ構造やアルゴリズムが、O(T)時間である問題を解けるというのがあったら、それを全く同じO(T)時間のままデータ構造を圧縮し作業領域量を減らすことができます (一応データ構造に対し読み込み操作しか無い場合。書き込みもある場合はまたちょっと面倒になる) このデータを圧縮したまま扱う

    DO++ : 透過的データ圧縮
  • レコメンド, LSH, Spectral Hashing - DO++

    WEB+DB press vol.49にレコメンド特集の記事をtkngさんと書きました。 内容は最初は、協調フィルタリングやコンテンツマッチの簡単な話から、特徴量をどのように表すか、大規模データをどのように処理するかにいき、特異値分解などの低ランク行列分解によるレコメンドやRestricted Boltzmann Machineといった最近のnetflix prizeの上位の手法など、かなり突っ込んだ議論もしてます。 個人的には三章でLocality Sensitive Hash(LSH)について扱っているあたりがお勧めです。 レコメンドの内部の問題を極言すると、データというのは疎な高次元の数値ベクトル(数百万次元とか)で表され、クエリでベクトルが与えられた時、これと似たようなベクトルを探してこいという問題になります。”似たような”を数学的にいえば、クエリのベクトルとの内積(各ベクトルは長

    レコメンド, LSH, Spectral Hashing - DO++
  • DO++: 機械学習による自然言語処理チュートリアル

    自然言語処理のときに使う機械学習手法のテクニックをざーっと2時間程度で紹介してほしいとのことだったので今日話してきました。基的に、そんなに頑張らなくても効果が大きいものを中心に説明(特にパーセプトロンとか)を説明してます。 紹介した手法はパーセプトロン、最大エントロピー、正則化、多クラス分類、系列分類(CRF, Structured Perceptron)などなどです。どれも一かじりする感じで網羅的に見る方を優先してます。個々の詳しい話はそれぞれの文献や実装などを当たってみてください。 スライド [ppt] [pdf] ここで話しているのは線形識別モデルの教師有り学習が中心で教師無し学習(クラスタリングなど)など他の自然言語処理を支える技術は省いてます。 こういうのを使って(使わなくてもいいけど)どんどんアプリケーション作らないといかんね。 Tarot is not used to ma

    DO++: 機械学習による自然言語処理チュートリアル
  • 1