ブックマーク / hoxo-m.hatenablog.com (6)

  • 可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む

    先日行われた第9回「データ解析のための統計モデリング入門」読書会にて、 「可視化で理解するマルコフ連鎖モンテカルロ法」というタイトルで発表させて頂きました。 発表スライドは以下です。 可視化で理解するマルコフ連鎖モンテカルロ法 from hoxo_m この発表は、みどりぼんに登場する、マルコフ連鎖モンテカルロ法(MCMC)のアルゴリズムである「メトロポリス法」と「ギブス・サンプラー」について、可視化して理解しようというお話です。 「マルコフ連鎖モンテカルロ法」というのは、字面だけ見ると難しそうですが、この発表で理解すべきポイントは、次のスライド 1枚に凝縮されています。 このことを念頭に置いて、それぞれの手法を見ていきましょう。 まず、メトロポリス法ですが、これは、 前の状態の近くの点を次の遷移先候補として選ぶ(マルコフ連鎖) そのときの確率比 r < 1 ならば確率 r で棄却する。それ

    可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む
  • Shiny アプリをワンクリックで起動するやつ作った - ほくそ笑む

    先日、RStudio から Shiny がリリースされ、早くも話題になっています。 Shinyを使って、RだけでWebアプリケーション - ixixixixixixi Shinyで5分でできる株価チャートウェブアプリ - はやしのブログ Rev.3 shinyでシャイニイイイイイイイイイイイイイイイイイイイイイイイイイ - 盆栽日記 Shiny は、R だけで手軽に Web アプリケーションが作れるということで、早速試してみましたが、これはすごいです。 解析結果を埋め込んだインタラクティブな Web アプリケーションを非常に簡単に作成することができます。 実際どういうのができるのか知りたい人は、デモページがあるので触ってみるといいでしょう。 Spark and Glimmer Users – RStudio Spark and Glimmer Users – RStudio Spark a

    Shiny アプリをワンクリックで起動するやつ作った - ほくそ笑む
  • 三次元散布図をRで描くのに画期的な新機能がRGLパッケージに加わった - ほくそ笑む

    以前、三次元散布図をRで描いてみたという記事で紹介したRGLパッケージに画期的な新機能が加わったので紹介します。 (情報源:R: Interactive 3D WebGL plot of time-space cube with RGL | geolabs) RGLパッケージの良いところは、3次元プロットをマウスドラッグでグリグリ動かせるところなのですが、いざ、ファイル出力しようとすると、静止画か動画でしか保存できず、インタラクティブな3次元プロットをそのままファイルに保存することができないというのが欠点でした。 しかし今回、新機能として、WebGL で動く HTML ファイルとして保存できる機能が付加されたようです。 さっそく試してみましょう。 install.packages("rgl") library("rgl") data(trees) plot3d(trees) writeWe

    三次元散布図をRで描くのに画期的な新機能がRGLパッケージに加わった - ほくそ笑む
  • 「子供に解けて大人に解けない問題」を統計的に無理やり解いてみた - ほくそ笑む

    今日は、R-bloggers に面白い記事が上がっていたので、それを紹介してみようと思います。 問題 「子供にはすぐに解けて、大人にはなかなか解けない不思議な問題」をご存知でしょうか? 最近ネットで割と話題になりました。 その問題は、次のようなものです。 8809 = 6 7111 = 0 2172 = 0 6666 = 4 1111 = 0 3213 = 0 7662 = 2 9312 = 1 0000 = 4 2222 = 0 3333 = 0 5555 = 0 8193 = 3 8096 = 5 7777 = 0 9999 = 4 7756 = 1 6855 = 3 9881 = 5 5531 = 0 2581 = ? https://twitter.com/#!/yappyJP/statuses/172086299099004928 なかなか面白い問題です。 答えはここでは書きませ

    「子供に解けて大人に解けない問題」を統計的に無理やり解いてみた - ほくそ笑む
  • 統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む

    はじめに 統計解析の手法を学ぶのに、教科書を読むのは素晴らしい学習方法です。 しかし、教科書で理論的なことを学んだだけでは、統計手法を使いこなせるようにはなりません。 統計解析手法を身につけるには、実際のデータについて手法を適用し、パラメータを変えるなどの試行錯誤を行い、結果を考察するというような経験を積むことが大切です。 それでは実際のデータをどうやって手に入れましょうか? 実験や調査をして実際のデータを得るのは大変でお金もかかります。 幸運なことに、世の中には適度なサイズの自由に使えるデータがたくさん存在します。 例えば、統計言語 R には、100以上ものデータセットがデフォルトで付属しています。 ただし、不幸なことに、それらのほとんどは英語で説明が書かれています。 英語は、いつかは乗り越えなければならない壁ですが、最初のうちはちょっと避けて通りたいところです。 というわけで、今日は、

    統計を学びたい人へ贈る、統計解析に使えるデータセットまとめ - ほくそ笑む
  • 主座標分析について簡単に紹介するよ! - ほくそ笑む

    今日は主座標分析(Principal Coordinate Analysis; PCoA)の紹介を簡単にしたいと思います。 主座標分析は古典的多次元尺度構成法(Classical Multidimensional Scaling; CMDS)とも呼ばれる統計解析手法です。 この解析手法を使用する主な目的は、高次元のデータを2次元や3次元に落として視覚化したいという時に使います。 以前紹介した主成分分析と同じような感じですね。*1 主成分分析との違いを簡単に言うと、主成分分析はユークリッド距離をなるべく保ちながら低次元に落とす方法ですが、主座標分析はユークリッド距離だけでなく、他の距離や類似度*2が使えるという点にあります。 例えば、ユークリッド距離の代わりに相関係数を使えば、相関の高いもの同士が近い配置になるようなプロットを作ることが可能です。 データを用意する さっそくやってみたいのです

    主座標分析について簡単に紹介するよ! - ほくそ笑む
  • 1