リンク Wikipedia 過剰適合 過剰適合(かじょうてきごう、英: Overfitting)とは、統計学や機械学習において、訓練データに対して学習されているが、未知データ(テストデータ)に対しては適合できていない、汎化できていない状態を指す。汎化能力の不足に起因する。 その原因の一つとして、統計モデルへの適合の媒介変数が多すぎる等、訓練データの個数に比べて、モデルが複雑で自由度が高すぎることがある。不合理で誤ったモデルは、入手可能なデータに比較して複雑すぎる場合、完全に適合することがある。 機械学習の分野では過学習とも呼ばれる。過剰適合の 2 users 23