タグ

algorithmとmathに関するtyosuke2011のブックマーク (4)

  • 数学・アルゴリズム研究室

    当コーナーでは、ゲーム制作や一般アプリケーション開発といったプログラミングの「土台」となる各種アルゴリズムや初級レベル数学の基的概念を確かめるプログラムを作って試してみます。コードの中で何をしたいのか、具体的な「手順」や数学的な背景を考え、それをプログラミング言語の変数やデータ構造、制御構造などで実現していきましょう。 ただ、私自身が数学に関しては素人なので、たいしたことはできません。内容も無保証ですので、ご注意ください。 コーナーでは、Javaアプレットを使用しているページがあります。Javaアプレットが埋め込まれているページでは、プラグインがないとプログラムが実行されません。 数式処理への第一歩>足し算(1999/10/ 6) 連結リスト(1999/10/ 6) 参照(ポインタ)の繋ぎあわせでデータを保持。 16進文字列と数値の変換(2000/ 6/20) 文字列の検索(1999/

  • https://www.ic-net.or.jp/home/takaken/nt/light/light2.html

  • JavaScript開発に役立つ重要なランダムの数式まとめ - ICS MEDIA

    プログラムで使うことの多い「乱数」。ゲーム開発やビジュアルアート、ウェブサイトのアニメーションにおいて乱数は非常に重要で、さまざまな用途で利用されています。プログラムで一般に乱数と聞くと、すべての数値が同じ頻度(分布)で出現する「一様乱数」と呼ばれる乱数をイメージする方が多いと思います。 多くの場合はこの「一様乱数」で取得した乱数を用いれば十分でしょう。しかし、場合によっては「一様乱数」ではなく、偏りのある乱数を用いることでコンテンツの見た目や現象の「自然さ」を演出することが可能です。 実は「一様乱数」に一手間加えることで、乱数の分布の偏りを制御できます。今回は乱数を使用して好みの分布を得るためのパターンをいくつか紹介します。 乱数分布のシミュレーションデモ (HTML5製) 次のデモはリアルタイムで乱数の出現頻度を計算し、グラフに可視化するコンテンツです。画面下のプルダウンで乱数の種類を

    JavaScript開発に役立つ重要なランダムの数式まとめ - ICS MEDIA
  • エラトステネスの篩 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "エラトステネスの篩" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2019年6月) エラトステネスの篩 (エラトステネスのふるい、英: Sieve of Eratosthenes) は、指定された整数以下の全ての素数を発見するための単純なアルゴリズムである。古代ギリシアの科学者、エラトステネスが考案したとされるため、この名がついている。

    エラトステネスの篩 - Wikipedia
  • 1