Table of contentsIntroduction 1.1 The workflows of data science and software development are different 1.2 The ML pipeline has to include Continuous Training 1.3 Model driftFeature Store 2.1 Centralised data access 2.2 Data Versioning 2.3 Data pipelines 2.4 Data labeling 2.5 Feature repository and data discoveryTraining pipeline 3.1 Model and experiment management 3.2 Pipeline orchestration 3.3 Au