スパム判定などでお馴染みのナイーブベイズ分類器。 構造が比較的単純なのに割といい感じに分類できるので重宝がられています。 ナイーブベイズ分類器で用いる文書モデルとして、「言語処理のための機械学習入門」(奥村学 著)では 多変数ベルヌーイモデル (multivariate Bernoulli model) 多項モデル (multinomial model) がそれぞれ最尤(ML*1)推定、最大事後確率(MAP*2)推定の場合について説明されていて、まあ例題を追っていけば高校生でも文系の子でもわかる感じ*3なんだけど、そういえばちゃんと自分で書いたことなかったなあと思って、寒いのにソイあずき抹茶フラペチーノをすすりながらやってみたのでした。 # -*- coding: utf-8 -*- from math import log # # 多変数ベルヌーイモデル multivariate Ber