タグ

algorithmに関するuzuki-firstのブックマーク (7)

  • 絶対に見逃せない投稿が、そこにはある - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Qiita の 「見逃せない投稿」 を独自に評価してランキングするサービス Qaleidospace を作りました。 投稿では、そのようなサービスを作ろうと思った理由、投稿を評価するアルゴリズム、システム構成について書きます。 余談ですが、今なら Yearly Ranking がほぼ 2015 年の投稿ランキングとなっており、眺めていて楽しいです。 TL;DR Qiita の「見逃せない投稿」をランキングするサービス Qaleidospace を作った。 適切な評価システムがあれば、書き手も読み手もみんな幸せになれるはず。 ストック数

    絶対に見逃せない投稿が、そこにはある - Qiita
  • Atomの重要なプリミティブの最適化 | POSTD

    これまで数カ月にわたり、私たちはAtomのパフォーマンスの改善に取り組んできました。その結果、最適化するための課題として特に興味深いのが マーカ という構造体だと分かりました。マーカはバッファの内容が変更されても、バッファの論理的な領域を追跡することができます。例えば、以下の図で緑色のハイライトがかかった部分のマーカは、文字列を書き換えたとしても同じ領域に残り続けます。 マーカは、Atomの機能を幅広くサポートする基的なプリミティブです。検索および置換を行う場合には、マーカを使うことで 検索結果のハイライト表示 ができます。スニペットの場合も、文字列を書き換える際にマーカを使い、 タブストップで移動する位置 を追跡することができます。さらにはスペルチェックの場合でも、マーカを使って スペルミスのある単語を抽出 したり、その単語を書き換える際の再チェックをしたりすることもできます。そもそも

    Atomの重要なプリミティブの最適化 | POSTD
  • クーポンコードの打ち間違えを防ぐために工夫した話 - クックパッド開発者ブログ

    こんにちは。会員事業部ビジネス開発グループの高田です。 クックパッドは今年、株主優待制度として、プレミアムサービス一年間無料クーポンを贈呈しました。エントリではクーポンコードを打ち間違えて、意図せず他の人のクーポンコードを使用するのを防ぐために工夫した話をご紹介します。 はじめに クーポンコードは入力のしやすさを優先して数字だけの文字列にしました。はじめは rand 関数を使って生成しようとしていたのですが、数字の打ち間違えや順序間違いで、意図せず誤使用してしまうのを防ぐためにチェックサムを加えるのがいい、と同僚から助言をもらいました。 いくつか調べて見たところ、Luhn アルゴリズムが上記を満たしていたので利用することにしました。 Luhn アルゴリズムの利用 Luhn アルゴリズムとは、誤り検出のためのチェックサム符号で、1 桁の間違いや隣接する数字の順序間違いを検出できるという特徴

    クーポンコードの打ち間違えを防ぐために工夫した話 - クックパッド開発者ブログ
  • Algoroo

    What is Algoroo? Algoroo is a Google algorithm tracking tool developed by DEJAN . Our system monitors carefully selected keywords and looks for fluctuations. Both negative and positive movement is added up to create a single SERP flux metric we call "roo". High roo value indicates a high volatility in Google's search results. Low roo value is usually displayed on an ordinary day, unlikely to be af

    Algoroo
    uzuki-first
    uzuki-first 2014/05/20
    こんなのあるんだ。
  • Netflixはどのように映画をジャンル分けしているか - 不可視点

    映像コンテンツのストリーミングといえばNetflix、現在4400万人のユーザー(有料会員)がいる成熟したサービスですが、現在もすごいペースで成長しています。 Netflix、第4四半期決算で大幅増益--加入者数は400万人増 - CNET Japan 利用できる地域は限られますが、日でもレコメンデーションのコンテストNetflix prizeの開催や、AWSをいち早く活用した企業として知られています。 Netflixは先に紹介したNetfix Prizeでレコメンデーションの性能向上に懸賞金をかけたほど、レコメンデーションがサービスの重要な位置を占めています。 視聴された映画の2/3はレコメンデーション経由らしいです。 Todd Yellin(Vice President of Product Innovation at Netflix)は、「映画をピッタリの人にピッタリのタイミングで

    Netflixはどのように映画をジャンル分けしているか - 不可視点
    uzuki-first
    uzuki-first 2014/01/29
    人力か!
  • 計算機プログラムの構造と解釈 第二版

    [ 目次, 前節, 次節, 索引 ] 2014-03-06 更新 [ 目次, 前節, 次節, 索引 ]

  • 高速な安定ソートアルゴリズム "TimSort" の解説 - Preferred Networks Tech Blog

    先日、TimSortというソートアルゴリズムが話題になりました。TimSortは、高速な安定ソートで、Python(>=2.3)やJava SE 7、およびAndroidでの標準ソートアルゴリズムとして採用されているそうです。 C++のstd::sort()よりも高速であるというベンチマーク結果1が話題になり(後にベンチマークの誤りと判明)、私もそれで存在を知りました。実際のところ、ランダムなデータに対してはクイックソート(IntroSort)ほど速くないようですが、ソートというシンプルなタスクのアルゴリズムが今もなお改良され続けていて、なおかつ人々の関心を引くというのは興味深いものです。 しかしながら、オリジナルのTimSortのコードは若干複雑で、実際のところどういうアルゴリズムなのかわかりづらいところがあると思います。そこで今回はTimSortのアルゴリズムをできるだけわかりやすく解

    高速な安定ソートアルゴリズム "TimSort" の解説 - Preferred Networks Tech Blog
  • 1