本文書の後半では、この表の中にある「解釈可能性」をサポートするライブラリ、InterpretMLのサンプルを動かしてみます。 それでは技術トピックを紹介してゆきます。 解釈可能性 多くの機械学習器は指定されたフォーマットの入力に対して結果を返すブラックボックスのように動作します。しかし適用するドメインによってはなぜ機械学習モデルがその結果を出力したのかが問われることがあります。 AIや機械学習の研究開発では精度が重要です。精度を向上するために古典的な機械学習器であれば、あらゆる有効そうな特徴量やその組み合わせを元にモデルを作成します。近年、大きな発展を遂げた深層学習では多数の中間層をもつモデルで入力の各要素がどのように結果に影響をあたえるかを判断するのはさらに難しくなります。 解釈可能性をサポートする機械学習モデルは出力がどのような情報をどのような重みをつかってなされたのかについての根拠を