※このエントリは、社員のTossyさんによって作成された第5回研究課題レポートからの抜粋です。 はじめに 近年、機械学習が非常に注目を集めている。機械学習を用いることによって、データから有用な規則、ルール、知識表現、判断基準などを抽出することができる。 機械学習を用いた例として、レコメンデーション、クラスタリング、分類、市場予測、評判分析、情報抽出、文字認識、ロボットなどが挙げられる。 また、アメーバを含むインターネットサービスの普及により、解析対象データが急激に増加している。解析アルゴリズムは最低でも線形の計算量が必要だが、それでも昨今のデータ増加量が上回っている。 世界で作成されたデータ量は、2009 年時点で0.8ZB にもなっており、2020 年には35ZB にも膨れ上がると予想されている(Degital Universe 2010)。 このことにより、機械学習処理の並列分散は今後