機械学習は、データから学ぶ技術です。しかし、実際のデータは完璧ではありません。特に、データセットにおける欠損データの問題は、機械学習プロジェクトにおいて避けられない課題です。欠損データをどのように扱うかは、モデルの性能に大きな影響を与えます。 伝統的に、欠損データを扱う一般的な方法は「一変量代入法」です。この方法は、欠損値をその変数の平均値や中央値で置き換えるなど、単純明快であり、実装が容易です。しかし、これは各変数を独立して扱うため、変数間の関係を無視してしまうという欠点があります。 ここで、より洗練されたアプローチとして「多変量代入法」が登場します。 この方法は、欠損データのある変数と他の変数との関係を考慮に入れ、欠損値をより正確に推定しようと試みます。多変量代入法は、変数間の相関関係を利用して、欠損データを推測することにより、よりリアルなデータセットを作成することを目指しています。