タグ

自然言語処理に関するwasamin0130のブックマーク (6)

  • 日本語形態素解析の裏側を覗く!MeCab はどのように形態素解析しているか - クックパッド開発者ブログ

    こんにちは、買物情報事業部の荒引 (@a_bicky) です。 前回、「検索結果の疑問を解消するための検索の基礎」で単語単位でインデキシングする前提で説明しましたが、今回は文などを単語単位で分割するために使う技術である形態素解析について触れます。 形態素解析器には色々ありますが、中でもメジャーと思われる MeCab の仕組みについて説明します。 MeCab の解析精度を上げるために辞書に単語を追加したことのある方もいると思いますが、動作原理を理解することで単語を追加する際に適切な生起コストを設定できるようになったり、学習の際に適切なパラメータを設定できるようになったりするはずです。 なお、MeCab は汎用テキスト変換ツールとしても使用できます が、簡単のため MeCab + IPA 辞書のデフォルト設定前提で説明します。 アジェンダ 形態素解析とは MeCab における最適な解析結果の推

    日本語形態素解析の裏側を覗く!MeCab はどのように形態素解析しているか - クックパッド開発者ブログ
  • Scala で 言語処理100本ノック 2015 を解く - Scala日記

    東北大学 情報科学研究科 情報伝達学講座(乾・岡崎研究室)で作成された自然言語処理入門者のための教材「言語処理100ノック 2015」というのがあるんですが、これを Scala で解いてみました。 github.com だいぶん前に書いたもので、問題が公開された直後にソースコードを出すと真の学習者への効果を下げると思い、控えていたものですが、 ただ、4月からやっている研究室などではさすがに終わっているだろうし、そもそもScalaを書こうという人は初学者ではないだろうというこで、初学者以外の学習効率を上げるための参考資料として、また、言語処理とScalaの裾野を広げるために公開しておきます。 主なターゲット層は 「Python で一周した。Scalaではどう書くのか知りたい」 「自然言語処理については大体分かっている。Scalaを学びたい」 「コップを読んでいる(あるいはもう読んだ)。実

    Scala で 言語処理100本ノック 2015 を解く - Scala日記
  • 自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々

    雑にですが,知ってるサイトやチュートリアルをまとめたくなったのでまとめてみました.夏ですし. 適宜更新しています. 最終更新 2018年02月03日 チュートリアル 言語処理100ノック 言語処理100ノック 2015 東工大の岡崎先生が作られたチュートリアルです. 他大学の研究室でも利用されています. 簡単な内容からはじまるので,プログラミングの導入としてもいいと思います. NLPプログラミングチュートリアル Graham Neubig's Teaching Carnegie Mellon UniversityのGraham Neubig先生のチュートリアルです. Githubにサンプルコードが公開されています. 各チュートリアルにはテストがついているので,実装が正しいかを確かめることができます. 扱っているトピックが広いので,かなり勉強になると思います. ソフト 形態素解析器 日

    自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々
  • 言語処理100本ノックを(第5章まで)やってみた - フツーって言うなぁ!

    久しぶりに技術関係のネタ書きます. 「言語処理100ノック」という,自然言語処理関係の問題集があることを知ったので取り組んでみました. これは,東北大学の乾・岡崎研究室でのプログラミング勉強会にて使われている教材だそうです. 「100ノック」の言葉通り,100問の問題からなる問題集をこなすことで,自然言語処理に関する基礎力と,プログラミング言語運用能力が同時に培えるようになっています. こういうものが公開されるとは,「いい時代になったなー」と純粋に思います. www.cl.ecei.tohoku.ac.jp 内容は,自然言語処理だけでなく,データベース,機械学習など,今の言語処理関係の研究に必要なスキルがこれ1つで身につくように設計されています. 対象プログラミング言語はPythonのようですが,基的に他の言語でも問題なく進められるようにはなっていると思います(言語処理に強いプログラ

    言語処理100本ノックを(第5章まで)やってみた - フツーって言うなぁ!
  • Deep Learningと自然言語処理 - Preferred Networks Research & Development

    クリスマスイブの夜は男三人しかいないオフィスで関数型言語の素晴らしさについて語っていた西鳥羽です。こんにちは。 昨日のPFIセミナーで「Deep Learningと自然言語処理」というタイトルで発表させていただきました。以下がその時の資料です。 この辺りに興味を持たれた方は今度の1月20日に「NIPS 2014 読み会」http://connpass.com/event/10568/ もどうぞ。残り枠数少ないので申し込みはお早めに。 当はBoltzmann Machine, Deep Belief Network, Auto Encoder, Stacked Auto EncoderなどのDeep Learningの歴史的なところも説明したかったのですが端折ってしまいました。Deep Learningそのものの説明も含めて以下の資料が参考になります。 http://ci.nii.ac.j

    Deep Learningと自然言語処理 - Preferred Networks Research & Development
  • 形態素解析の過去・現在・未来

    2. ⾃自⼰己紹介 l  海野  裕也  (@unnonouno) l  unno/no/uno l  研究開発部⾨門  リサーチャー l  専⾨門 l  ⾃自然⾔言語処理理 l  テキストマイニング l  職歴 l  2008/4~2011/3 ⽇日アイ・ビー・エム(株)東京 基礎研究所 l  2011/4~ 現職 2 3. 今⽇日の発表の⽬目的 l  形態素解析器の中で何が⾏行行われているか l  コスト最⼩小化, HMM, MEMM, CRF etc. , l  JUMAN, Chasen, MeCab, etc. l  ・・・だけだとよくあるので、最新の⼿手法と過 去の⼿手法をまとめる l  現在の問題点に関してもまとめる 3

    形態素解析の過去・現在・未来
  • 1