XGBoostは機械学習手法として 比較的簡単に扱える 目的変数や損失関数の自由度が高い(欠損値を扱える) 高精度の予測をできることが多い ドキュメントが豊富(日本語の記事も多い) ということで大変便利。 ただチューニングとアウトプットの解釈については解説が少ないので、このあたりについて説明する。 XGBoostとは? 勾配ブースティングのとある実装ライブラリ(C++で書かれた)。イメージ的にはランダムフォレストを賢くした(誤答への学習を重視する)アルゴリズム。RとPythonでライブラリがあるが、ここではRライブラリとしてのXGBoostについて説明する。 XGBoostのアルゴリズム自体の詳細な説明はこれらを参照。 https://zaburo-ch.github.io/post/xgboost/ https://tjo.hatenablog.com/entry/2015/05/15/