タグ

2017年6月24日のブックマーク (3件)

  • MCMCサンプルを{dplyr}で操る - StatModeling Memorandum

    RからStanやJAGSを実行して得られるMCMCサンプルは、一般的に iterationの数×chainの数×パラメータの次元 のようなオブジェクトとなっており、凝った操作をしようとするとかなりややこしいです。 『StanとRでベイズ統計モデリング (Wonderful R)』のなかでは、複雑なデータ加工部分は場合によりけりなので深入りしないで、GitHub上でソースコードを提供しています。そこでは、ユーザが新しく覚えることをなるべく少なくするため、Rの標準的な関数であるapply関数群を使っていろいろ算出しています。しかし、apply関数群は慣れていない人には習得しづらい欠点があります。 一方で、Rのデータ加工パッケージとして、%>%によるパイプ処理・{dplyr}パッケージ・{tidyr}パッケージがここ最近よく使われており、僕も重い腰を上げてやっと使い始めたのですが、これが凄く使い

    MCMCサンプルを{dplyr}で操る - StatModeling Memorandum
  • dplyrの人気記事 6件 - はてなブックマーク

    Pandas と dplyr のより網羅的な対比は、既に記事が出ています。 私が参考にしたものをこの記事の末尾で紹介していますので、詳しくはそちらをご覧ください 。 前置き|テーブルのキーの扱い方の違い Pandas を使い始める前に理解すべきこととして、dplyr と Pandas ではテーブルのキーの扱い方に大きな違いがあります。この違いを認識していなかった私はかなり苦戦しました…… 以下の2点を理解して (覚悟して?) おくと、学習コストが多少減るのではないでしょうか。 Pandas ではテーブルのキーが Index という別オブジェクトで管理されていること Pandas ではキーや列名に階層構造を持たせられること dplyr におけるキーの扱い R のデータフレームにはテーブルのキーを表す方法として row names という仕組みが用意されています。しかし、dplyr (が利用し

  • 計算高速化のための強力な武器、NumPyのブロードキャスティングとSciPyの疎行列処理

    プログラミング言語「Python」は機械学習の分野で広く使われており、最近の機械学習/Deep Learningの流行により使う人が増えているかと思います。一方で、「機械学習に興味を持ったので自分でも試してみたいけど、どこから手を付けていいのか」という話もよく聞きます。連載「Pythonで始める機械学習入門」では、そのような人をターゲットに、Pythonを使った機械学習について主要なライブラリ/ツールの使い方を中心に解説していきます。 連載第1回の「Python機械学習/Deep Learningを始めるなら知っておきたいライブラリ/ツール7選」では、ライブラリ/ツール群の概要を説明しました。前回は、その中でもJupyter Notebookの基操作と設定について説明しました。 前回から連載第1回で紹介した各種ライブラリを使う具体的なコードを例示していますが、Jupyter Note

    計算高速化のための強力な武器、NumPyのブロードキャスティングとSciPyの疎行列処理