タグ

ブックマーク / smrmkt.hatenablog.jp (2)

  • 線形代数の用語と意味まとめ(主に自分用) - About connecting the dots.

    恥ずかしながら,線形代数周りの用語って似たようなものが多くて,すぐにアレがどれだっけと混同してしまいがちになります.線形代数の手計算とかがんばってたのなってもう10年とか昔の話だし,チートシート的にまとめなおしておこうと思いました.内容的には,主に統計や機械学習で使うような内容が中心になっています. 概要 統計・機械学習で使う線形代数は,基的には以下「計算の簡便化」と「データ変換」の2つがメインです.もちろん数学的に突っ込んでいったり,統計・機械学習でも応用的な手法を用いる場合はその限りではないですが,基的には下の2つが大きいと思います*1. 計算の簡便化 (例えば固有値・固有ベクトルを用いて)行列を対角化することで,行列の乗算を高速に実施する (LU分解を用いて)扱いやすい形に行列を分解することで,その後の計算を高速にする データ変換 SVDを行うことでLSIやPCAといったデータ縮

  • 非負値行列因子分解(NMF)によるレコメンドのちょっとした例 - About connecting the dots.

    最近線形代数についていろいろ読みなおしたりしてるのですが(線形代数チートシートを前の記事でまとめてあります),その一環でレコメンドアルゴリズムについていくつか試してみたので,それを解説します.順序としては,基の協調フィルタリング(ユーザベースド,アイテムベースド)→特異値分解(SVD)→非負値行列因子分解(NMF)になります. 基的な考え方 ここで取り扱うのは,すべて以下のようなユーザ×商品のマトリックスをベースとしたレコメンドになります*1.ここでは映画レンタルサービスを例にして考えます.6人のユーザが,4つの映画*2のうちレンタル視聴したものについては,1-5点の5段階評価を行いました.0になっているものは「みていない」ということになります. まずはざっと評価の状況をみると,「千と千尋の神隠し」が最もよく視聴されていて,6人中4人がみています.次にみられているのは「となりのトトロ」

  • 1