恥ずかしながら,線形代数周りの用語って似たようなものが多くて,すぐにアレがどれだっけと混同してしまいがちになります.線形代数の手計算とかがんばってたのなってもう10年とか昔の話だし,チートシート的にまとめなおしておこうと思いました.内容的には,主に統計や機械学習で使うような内容が中心になっています. 概要 統計・機械学習で使う線形代数は,基本的には以下「計算の簡便化」と「データ変換」の2つがメインです.もちろん数学的に突っ込んでいったり,統計・機械学習でも応用的な手法を用いる場合はその限りではないですが,基本的には下の2つが大きいと思います*1. 計算の簡便化 (例えば固有値・固有ベクトルを用いて)行列を対角化することで,行列の乗算を高速に実施する (LU分解を用いて)扱いやすい形に行列を分解することで,その後の計算を高速にする データ変換 SVDを行うことでLSIやPCAといったデータ縮