この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook 機械学習編1(基礎編)では、最も初歩的な分類器である単純パーセプトロンを題材に、機械学習の基本について勉強しました。機械学習編2(実用編)では、実問題に機械学習を適用する上でのコツや、各種の機械学習アルゴリズムの使い分け、高次元データへの対処法、といったトピックについて解説していきます。 実問題に機械学習を適用する タスクを定義する データを特徴ベクトルに変換する 評価方法を決める 正解データの正例と負例は均等に ベースラインとなる手法を実装する 実データに向き合うときの心構え 機械学習のワークフロー 1. 前処理 データセット作成 サンプリング 特徴抽出 欠損値・欠測値への対応 値のスケーリング 特徴選択 次元削減 2. 学習 モデ
フロントエンドのパラダイムを参考にバックエンド開発を再考する / TypeScript による GraphQL バックエンド開発
This document provides an overview of recommendation systems and collaborative filtering techniques. It discusses using matrix factorization to predict user ratings by representing users and items as vectors in a latent factor space. Optimization techniques like stochastic gradient descent can be used to learn the factorization from existing ratings. The document also notes challenges of sparsity
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く