はじめに HiveはHDFS上のデータをSQLで操作できるHadoopのエコシステムです。Facebook社により開発され、現在はApacheのトッププロジェクトの一つです。 Hiveがリリースされてから7年ほど時間が経ちました。 その間に他のビッグデータ用のSQLエンジンがいくつか登場しました。 これらのSQLエンジンの多くは、Hiveが苦手としていた低レイテンシなクエリの実行に応えることにフォーカスしています。 従来HiveのバックエンドはMapReduceで動いており、クエリを実行すると完了するまで数分から数十分、数時間の時間がかかりました。そのためアナリストの解析用途で利用するのは難しく、主にデイリーやアワリーの集計などのバッチ処理として利用されてきました。 しかしながら、現在もHiveの開発・改善は非常に活発に行われています。特にここ1〜2年の間にHortonworks社を中心と
この記事は、インテルの SSG STOビッグデータテクノロジーグループのメンバーからDataBricksに寄稿されたブログを翻訳したものです。誤訳がありましたら、@teppei_tosaに御連絡ください。 Sparkは、その優れた性能、シンプルなインターフェイス、および分析や計算のための豊富なライブラリによって、幅広い業界で採用されてきています。ビッグデータエコシステムにおける多くのプロジェクトと同様に、Sparkは、Java仮想マシン(JVM)上で実行されます。Sparkはメモリに大量のデータを格納することにおいて、Javaのメモリ管理とガベージコレクション(GC)に大きく頼っています。また、プロジェクトTungstenなどの新たな取り組みは、将来のバージョンで、メモリ管理のさらなる簡素化と最適化を目指しています。しかし、今日時点でも、JavaのGCオプションとパラメータを理解しているユ
How resource tuning, parallelism, and data representation affect Spark 1.3 job performance. Editor’s Note, January 2021: This blog post remains for historical interest only. It covers Spark 1.3, a version that has become obsolete since the article was published in 2015. For a modern take on the subject, be sure to read our recent post on Apache Spark 3.0 performance. You can also gain practical, h
{"serverDuration": 35, "requestCorrelationId": "b45a8231fbaabbfb"}
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く