最近盛り上がりを見せるデータサイエンス界隈。 様々なpodcastが存在しているが、あまり言及されることが無いようなのでここでまとめておく。 割と更新頻度が高いものを中心に選んだつもりなので、これらを購読すれば聞くものが無いという状態にはなかなかならないかと思う。 言語は英語なので、データサイエンスの最新動向を知るのとともに英語の勉強にも使えるかと思う。 日本の機械学習エンジニアと研究者が世界と戦うための一助になれば幸いです。 Super Data Science
![データサイエンス関係のpodcastをまとめてみた | 10001 ideas](https://cdn-ak-scissors.b.st-hatena.com/image/square/b86c80ba346a93ac5186823082a286345eea52b1/height=288;version=1;width=512/https%3A%2F%2F10001ideas.com%2Fwp-content%2Fuploads%2F2017%2F10%2Fai-2692591_1280.png)
ソニーは8月17日、コーディングの知識がなくても、ディープラーニング(深層学習)のプログラムを生成できるソフトウェア「Neural Network Console」の無償提供を始めた。自社の製品・サービス開発にも利用しているツールを多くの開発者や研究者に使ってもらうことで「ディープラーニング技術の発展につなげる」という。 Neural Network Console。ドラッグ&ドロップ操作で「関数ブロック」を自由に配置し、ニューラルネットワークを視覚的に構築できる 同社は今年6月、ディープラーニングのプログラムを生成する際に使うコアライブラリー(基盤ソフトウェア)「Neural Network Libraries」(以下、Libraries)をオープンソース化した。人間の脳を模倣した「ニューラルネットワーク」の設計、製品・サービスへの搭載を効率化する演算モジュール群だが、利用には高度なプロ
2. © ABEJA, Inc. Deep Learningのパラメータを理解し、チューニングを実践することで Deep Learningに関する理解を深める ■学べること ・どのパラメータを変えると実行速度や学習速度がどう変わるのか? ・ネットワークの構築方法を変えるとどう精度にインパクトするのか? ■対象 Deep Learningはある程度使ったことあるが、ネットワークの細かな チューニングはどうすればいいかわからない 目的 3. © ABEJA, Inc. Deep Learningに対する初学者以上の知識 Deep Learningで自分でネットワークを書いたことがある Python(numpy, tensorflow)に関する知識 Linux, SSH, AWSに関する知識 今回の勉強会の対象者
機械学習をやりたいんだけど、データがない!他のデータ使ってみたい! そんな方のために、機械学習に使えるオープンデータを集めました。 他にも、このデータセットオススメ!というものがあれば、是非ご紹介して頂けると嬉しいです。m(__)m UC Irvine Machine Learning Repository カリフォルニア大学アーバイン校が公開した、データセット。351件のデータセットがあり後述する DATA GO に比べれば少ないが、ほとんどがMachine Learning用のデータ・セットなので、かなりオススメ。 UCI Machine Learning Repository かの有名なあやめの花(iris)のデータセットもここから見ることができます。 国立情報学研究所 情報学研究データリポジトリ データセット一覧 yahoo,楽天,ニコニコなどのデータがあります。 DATA.GO.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く