タグ

ブックマーク / echizen-tm.hatenadiary.org (3)

  • まったく最小二乗法は最高だぜ!な「イラストで学ぶ機械学習」を読み終えた。 - EchizenBlog-Zwei

    イラストで学ぶ機械学習」という機械学習を読んだので感想を書いておく。 なお書にはMatlabのコードが書いてある場合があるけど、Matlabに詳しくないので読み飛ばした。 対象となる読者 あくまで私の主観だけど、以下のような人が読むと良さそうな感じ。 ・機械学習の基礎は知っている(パーセプトロンくらいは実装できる) ・機械学習の論文に出てくる用語が理解できる ・確率の基礎は知っている(条件付き確率とか、周辺確率とか) ・最適化の基礎は知っている(ラグランジュの未定乗数法がわかる) ・行列の演算がわかる(これはわからなくても適当に読み飛ばせば大丈夫かも) ・機械学習で知っておいたほうが良いことを手早く把握したい ・まったく識別関数は最高だぜ!と思っている ・損失関数について理解を深めたい ・正則化について理解を深めたい ・次元削減について理解を深めたい ・転移学習について理解を深めた

    まったく最小二乗法は最高だぜ!な「イラストで学ぶ機械学習」を読み終えた。 - EchizenBlog-Zwei
  • 自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei

    自然言語処理を活用したwebサービス開発に関わって5年以上経った。いい機会なのでこれまでを振り返って役に立ったと思う5冊をメモしておく。 1.珠玉のプログラミング―質を見抜いたアルゴリズムとデータ構造 まずはこれ。有名ななので知っている人も多いと思う。簡単に説明するとちょっと前に「フェルミ推定」という名前で流行ったような、データから必要な数値を概算する方法や、問題が起きたときに問題点がどこにあるのか?最小の労力で解決するにはどこをいじればよいのか?などが書いてある。「webサービスで自然言語処理だ!」というと無限に夢が広がりがちなので、どういうデータが使えるのか、それをどういう形にもっていけばイケてるサービスになるのか、それはどのくらいの期間で実現できるか、ということを考える必要がある。そういうわけで書は真っ先に読むべき一冊なのでは(余談だけれど、以前M << Nなデータに対してO(

    自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei
  • 「テキストマイニングを使う技術/作る技術」を読んだ - EchizenBlog-Zwei

    自然言語処理は大学時代からやっていたのだが、恥ずかしながらテキストマイニングについてはよくわかっていなかった。@shima__shima先生から「テキストマイニングを使う技術/作る技術」を紹介していただいたので読んでみた(紹介していただき、ありがとうございました)。 書によるとテキストマイニングは厳密な定義はないものの、テキストデータから抽出されたデータを用いたデータマイニングを指すらしい。 で、従来のデータマイニングであれば数値データからそのままマイニングすればいいけれどテキストデータは自然言語で書かれていてそのままでは使えないので自然言語処理(NLP)を用いてマイニングで使うデータを抽出するよ。ということらしい。なんとなくNLPの中にテキストマイニングがあるのかと思っていたのだが、テキストデータとデータマイニングの橋渡しをする技術としてNLPを使っている、というのが正しいのかも。

    「テキストマイニングを使う技術/作る技術」を読んだ - EchizenBlog-Zwei
  • 1