タグ

線形代数と機械学習に関するymym3412のブックマーク (2)

  • 機械学習をやる上で線形代数のどのような知識が必要になるのか

    TL;DR 「機械学習をやるなら線形代数はやっとけ」的な話が出るけど具体的な話があまり見当たらない 研究でなく実務レベルで機械学習を扱う場合にどのような線形代数の知識が必要になるのか考えてみた 高校でやるベクトル・行列+αくらいあれば概念的には十分で、計算が苦じゃない基礎体力が重要では? 機械学習が流行ることで、機械学習に必要な数学的基礎にも話が及ぶことが多くなってきている。 特に、線形代数や微積に関しては基礎を押さえとけみたいなことを言う人が結構いる気がする。 中身のない話をしたい場合はまあそれだけでもいいのだけれど、具体的に何が必要になるのかを説明してくれてる人はあまりいない。少なくとも自分の観測範囲では。 レベル感が様々なので万人に通用する議論はできないのはしょうがないが、「自分としてはこれは必要だと思っている」みたいな意見は聞いてみたい。 自分の考えはどうだろう、ということで線形代

    機械学習をやる上で線形代数のどのような知識が必要になるのか
  • ディープラーニングのための線形代数入門:一般的演算の初学者向けガイド | POSTD

    Jeremy Howardによる ディープラーニングの素晴らしいコース を受講している間、自分の前提知識がさびついてきているせいで、誤差逆伝播法のような概念が理解しにくくなっていることを認識しました。そこで、理解度を上げるべく、そうした概念に関するいくつかのWikiページをまとめてみることにしました。記事では、ディープラーニングでよく使われる線形代数演算のいくつかについて、ごく基的な事項をざっとご紹介します。 線形代数とは? ディープラーニングの文脈での線形代数とは、数の集合を同時に操作するための便利な手法を提供してくれる、数学的ツールボックスです。これらの数値を保持するためのベクトルや行列(スプレッドシート)のような構造体と、それらを加算、減算、乗算、および除算するための新しい規則を提供します。 線形代数が便利な理由 線形代数は、複雑な問題を単純で直感的に理解できる、計算効率の良い問

    ディープラーニングのための線形代数入門:一般的演算の初学者向けガイド | POSTD
  • 1