タグ

Pythonとvisualizationに関するyoshiwebのブックマーク (2)

  • あらゆるデータセットに使える3つの可視化テクニック | Yakst

    Python の可視化ライブラリである Seaborn を利用して表現豊かなグラフを生成するためのテクニックを紹介する記事です。グラフの選択基準としてデータを構成する値が分類のある値かそれとも連続値であるかに注目しており、この記事を通して実践的なテクニックを身につけることができます。 可視化は素晴らしいものです。ですが、優れた可視化の実現は悩ましく容易ではありません。 また、大勢に対して優れた可視化をプレゼンするような場合には時間と労力がかかりますよね。 私たちは棒グラフ、散布図、ヒストグラムの作り方についてはよく知っていますが、それらを美しくすることに対してはそこまでの注意を払っていません。 このことは同僚やマネージャーからの信頼に影響します。今あなたがそれを感じることはありませんが、それは起こることです。 さらに、私はコードの再利用が重要であることを知っています。新しいデータセットに触

  • 機械学習のデータセットを可視化する「Facets」で遊んでみた -

    秋山です。 先日、Google Open Sourceで「Facets」という機械学習向けデータセットの可視化ツールが公開されました。 サイトはこちら opensource.googleblog.com (※Chromeであれば、ブラウザ上でどういったことができるかのデモを触れます。Safariだとうまく動かない?ようなのでご注意ください) GitHubはこちら github.com デモのようにブラウザ上でデータを可視化したり、Pythonライブラリのjupyter内で使ったりすることができます(ブラウザで表示させるかjupyter内で表示させるかだけの違いですが…) 例えば巨大なデータを扱っていて、うまく分離できていないデータ群はどの辺りになるのか…といったことを可視化して眺めたいときなどによさそうなので、実際にちょっと使ってみたいと思います。 ■Facets使ってみた Facetsに

    機械学習のデータセットを可視化する「Facets」で遊んでみた -
  • 1