タグ

ブックマーク / qiita.com/e869120 (2)

  • アルゴリズム・AtCoder のための数学【後編:数学的考察編】 - Qiita

    0. はじめに こんにちは、大学 1 年生になったばかりの E869120 です。記事は、 アルゴリズム・AtCoder のための数学【前編:数学的知識編①】 アルゴリズム・AtCoder のための数学【中編:数学的知識編②】 からの続きです!!! ※前編・中編を読んでいなくても理解できる、独立したトピックになっているので、ご安心ください。 後編から読む方へ 21 世紀も中盤に入り、情報化社会が急激に進行していく中、プログラミング的思考やアルゴリズムの知識、そしてアルゴリズムを用いた問題解決力が日々重要になっています。 しかし、アルゴリズム構築能力・競プロの実力は、単純にプログラミングの知識を学ぶだけでは身につきません。近年、数学的なスキルが重要になりつつあります。実際、私はこれまでの経験で「数学の壁で躓いた競プロ参加者」をたくさん見てきました。そこで記事では、 AtCoder のコン

    アルゴリズム・AtCoder のための数学【後編:数学的考察編】 - Qiita
  • 高校生がアルゴリズムとスパコンの力で、京都の碁盤目状道路を13.9%効率化した話 - Qiita

    2. 研究で解く問題 「いざ研究しよう!」と思っても、条件や設定を決めないと何も始まりません。 まずは研究を分かりやすくするために、「一つの問題」に落とし込むことにしました。 問題設定 縦 $N$ 行・横 $N$ 列の大きさの碁盤の目があります。隣り合う交差点間の距離は 1 です。つまり、交差点が合計で $N^2$ 個あり、それぞれ座標 $(1, 1), (1, 2), ..., (1, N),$ $(2, 1), (2, 2), ..., (N, N-1), (N, N)$ に位置すると考えることもできます。 下の図は、$N = 4$ の場合の交差点の位置です。 あなたは、碁盤の目の交差点の位置は変えずに、道路の並びのみを変えることができます。上手く道路の並びを変えることで、できるだけ「便利」な道路網を建設してください。 「便利な道路網」って何? 私は、以下の 2 つの条件を満たす道路

    高校生がアルゴリズムとスパコンの力で、京都の碁盤目状道路を13.9%効率化した話 - Qiita
  • 1