タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmとdeeplearningに関するyukimori_726のブックマーク (25)

  • Chainerで学ぶLSTM - kivantium活動日記

    このブログで何回も取り上げているように、ニューラルネットワークを用いた機械学習はかなりの力を発揮します。畳み込みニューラルネットワーク(convolutional neural network, CNN)は画像中で近くにあるピクセル同士の関係に注目するなど画像の特徴をうまくとらえたネットワークを構築することでかなりの成功を収めています。ノーフリーランチ定理が示唆するように万能の機械学習器は存在しないため、対象とするデータの特徴を捉えた学習器を構築することが機械学習の精度を上げる上で重要になります。 そこで今回は時系列データの解析に向いた回帰結合ニューラルネットワーク(recurrent neural network, RNN)の精度を上げるのに重要なLSTMを取り上げます。 この記事では誤差逆伝搬などのニューラルネットワークの基知識は説明しません。誤差逆伝搬についてはPRMLの5章やNe

    Chainerで学ぶLSTM - kivantium活動日記
  • 実装ディープラーニング

    はじパタLT資料です。ディープラーニングのライブラリの使い方が知りたい方は15ページからご覧ください。

    実装ディープラーニング
  • 画風を変換するアルゴリズム - Preferred Networks Research & Development

    Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。 https://github.com/mattya/chainer-gogh こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。 今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。 概要 2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。 このプログラムは、コンテンツ画像に書かれた物体の配置をそのま

    画風を変換するアルゴリズム - Preferred Networks Research & Development
  • Caffeによる特徴抽出+AROWによる分類を試した - kivantium活動日記

    Deep Learningのすごいところとしてよく挙げられるのは「画像から自動で特徴抽出をしてくれる」ことです。従来の手法であればタスクに合わせた画像の特徴をうまく抜き出すような特徴量を作る必要がありましたが、Deep Learningではネットワークが勝手に「特徴」を抽出してくれます。ネットワークが抽出した特徴量を使って別の分類器を学習させて分類することもできます。Deep Learningが自動で作った特徴量を使うことで人間が作ったSIFTなどの特徴量よりも高い精度で分類が可能になることもあるようです。 そこで今回はDeep LearningライブラリのCaffeを使って特徴抽出を行った後、AROWというアルゴリズムを使って分類を行ってみたいと思います。 Caffeによる特徴抽出 Caffe | Feature extraction with Caffe C++ code.とCaffe

    Caffeによる特徴抽出+AROWによる分類を試した - kivantium活動日記
  • 人工知能を実現する学習アルゴリズムに必要な能力 - 人工知能に関する断創録

    今年は、Deep Learningを研究する予定(2014/1/4)だったのだけれど、多層パーセプトロンまで到達した(2014/2/5)ところで少々(?)足踏みしている。Deep Learningの構成要素であるボルツマンマシンを理解するのに手間取っているためだ。ボルツマンマシンの理解には、マルコフ確率場やMCMCの理解が必要なことがわかったので少し廻り道してモンテカルロ法を先に勉強(2014/6/20)していたというわけ。 ただ、そればかりでは少々退屈になってきたので少し先回りして Deep Learning の先駆者のBengioさんが書いた論文 Learning Deep Architectures for AI を勉強している。示唆に富む見解が多いのであとで振り返られるように記録しておきたい。 まずは、1.1節のDesiderate for Learning AIの部分。人工知能

    人工知能を実現する学習アルゴリズムに必要な能力 - 人工知能に関する断創録