タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとAlgorithmとrnnに関するyukimori_726のブックマーク (2)

  • メモリを操作するRNNでソートアルゴリズム(可変長&順序フラグあり)を機械学習できたよっ! - Qiita

    微分可能な神経機械? Google DeepMindがNatureに投稿した論文「Hybrid computing using a neural network with dynamic external memory」が、なんだかヤバそうな香りがします。 公式の紹介記事「Differentiable neural computers」では、プラトンの記憶論から話が始まりますし、論文では脳の記憶を司る海馬に喩えていたりして、なかなか格調高いです。単なるニューラルネットワークの性能改善に留まらず、哲学や神経科学の観点からも理想の人工知能に一歩近づくことができたよ、これは新しいコンピュータの在り方の発明なのではないか、という気概が感じられます。 仕組みとしては流行りのAttentionという概念が入っていて、メモリを表す行列と、それを選択的に操作しながらベクトルを入出力するコントローラがありま

    メモリを操作するRNNでソートアルゴリズム(可変長&順序フラグあり)を機械学習できたよっ! - Qiita
  • リカレントニューラルネットワークの理不尽な効力(翻訳) - Qiita

    上記は、普通の RNN の前進パスの仕様を決めます。そのための RNN のパラメータは、3つの行列 $W_{hh}, W_{xh}, W_{hy}$ です。隠れ状態 $self.h$ は、ゼロベクトルで初期化されます。$np.tanh$ 関数はアクティベーションを $[-1, 1]$ の範囲に押しつぶす、非線形性を実現します。どのように作用するのか簡単に述べると:tanh 内に2つの項があります:一方は前の隠れ状態に基づき、他方は現在の入力に基づきます。numpy の $np.dot$ は行列の掛け算です。2つの中間項は加算され、tanh により新たな状態ベクトルに押しつぶされます。数学の表記に慣れているなら、隠れ状態の更新は以下のように記述可能です。$h_t = \tanh ( W_{hh} h_{t-1} + W_{xh} x_t )$ 、ここで tanh は要素ごとに適用されます。

    リカレントニューラルネットワークの理不尽な効力(翻訳) - Qiita
  • 1