タグ

機械学習に関するyuroyoroのブックマーク (12)

  • 【世界一分かりやすい解説】イラストでみるTransformerBeginaid

    記事はThe Illustrated Transformerを和訳した内容になります。引用元はJay Alammarさん(@JayAlammar)が執筆されたブログ記事で,MITの授業でも実際に利用されています。 所々に管理人の注釈が入ります。その場合は,このような鉛筆印のボックス内に記述するようにしています。もし翻訳間違いなどがございましたら,ご指摘いいただけますと幸いです。なお,記事の作成に関しては,Jay Alammarさんに許可をいただいております。 はじめに 前回の記事では,注意機構についてお伝えしました。注意機構とは,現代の深層学習において至る所で利用されている手法で,ニューラル機械翻訳の精度向上に大きく貢献した概念です。記事では,注意機構を利用してモデルの学習速度を向上させるTransformerについて見ていきましょう。Transformerは特定のタスクにおいて,G

    【世界一分かりやすい解説】イラストでみるTransformerBeginaid
  • 【スマホOK/実行しながら学ぶ】東大松尾研のデータサイエンティスト育成/ Deep Learning基礎講座を自習する - Qiita

    2. numpy, scipy, scikit-learn の使い方を理解する 3. k-Nearest Neighbors (k-NN) を使った手書き文字認識 4. ロジスティック回帰の実装と学習、活性化関数とその微分の実装、多層パーセプトロンの実装と学習 5. Tensorflowの基礎を学ぶ 6. Denoising Autoencoderの実装. また, MNISTを用いて次のことを確認、Stacked Denoising Autoencoder (SdA) の実装 7. 畳み込みニューラルネットワーク(Convolutional Neural Networks)の実装と学習 8. CIFAR10データセットを使ったAugmentation、前処理、Batch Normalization、CNN実装、Activation可視化 9. Recurrent Neural Networ

    【スマホOK/実行しながら学ぶ】東大松尾研のデータサイエンティスト育成/ Deep Learning基礎講座を自習する - Qiita
  • Go言語で扱えるデータフレーム厳選4つ - Qiita

    はじめに データサイエンティストでなかったとしても、数値データを使って様々な解析をする際には CSV ファイル等ファイルを読み込み、数値の配列としてメモリに保持して、それらをループ等で利用して解析を行っておられると思います。 その際、配列は1次元目に行、2次元目に列、を格納するのが一般的です。多くのケースではこの方法で事足りるのですが、解析を行ううちに「列としてデータの固まりを扱いたい」「ラベル付けされた列を扱いたい」と感じる事が出てくると思います。 これを簡単にしてくれるのが「データフレーム」です。 データフレーム4種 記事では Go 言語から扱えるデータフレームを4つご紹介します。 QFrame https://github.com/tobgu/qframe QFrame は、フィルタリング、集計、およびデータ操作をサポートするイミュータブルなデータフレームです。 QFrame での

    Go言語で扱えるデータフレーム厳選4つ - Qiita
  • GitHub - matsuolab-edu/dl4us

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

    GitHub - matsuolab-edu/dl4us
  • ランダムフォレストと検定を用いた特徴量選択手法 Boruta - 学習する天然ニューラルネット

    特徴量選択とは Borutaとは とりあえず使ってみる ベースラインの判別 Borutaの判別 Borutaのアイデアの概要 Borutaのアルゴリズム 1. 判別に寄与しないはずの偽の特徴量を作る。 2. 偽の特徴量と一緒にランダムフォレストを訓練。 3. 各特徴量の重要度と偽の特徴量の特徴量を比較。 4. 複数回比較し検定を行うことで、当に重要な特徴量のみを選択。 検定について 1. 棄却したい帰無仮説と受容したい対立仮説を用意する。 2. 観測値から検定統計量Tを定める。 3. 帰無仮説が正しいとしてTの分布を求める。 4. 十分小さい有意水準αを定め、帰無仮説が正しいときにとなる領域を棄却域とする。 5. 観測されたTがに入っていたら対立仮説を受容し、入っていなければ帰無仮説を受容する。 まとめ 補足 使う際のTips等 2019/01/06追記 参考 特徴量選択とは 特徴量選択

    ランダムフォレストと検定を用いた特徴量選択手法 Boruta - 学習する天然ニューラルネット
  • オンライン広告における不正クリック検出手法と歴史

    2016-09-03 データマイニング+WEB東京での発表資料です

    オンライン広告における不正クリック検出手法と歴史
  • TensorFlow Playground でわかるニューラルネットワーク

    この記事を読みニューラルネットワークに興味を持ち勉強を始めました。 ニューラルネットワークを目で見て直感的に理解できるのは素晴らしいですね。 半年以上も前の記事なのでコメントを読まれているか分かりませんが、お聞きしたいことがあります。 TensorFlow Playgroundの入力層のFeatureについて勉強をしているのですが、なぜ生の入力値(座標x,y)ではなく、Featureを間にかませているかその背景を教えていただきたいです。 というのも、MNISTのチュートリアル等では縦横28x28ピクセルの784個のアドレスのグレースケールの値を入力とし、入力層に784個のニューロンを並べている解説が 多く、TensorFlow Playgroundで行われているようなFeatureの選択がどこから出てきたものなのか分からないのです。 ちょっと宣伝のようになってしまいますが、自分の学習成果の

    TensorFlow Playground でわかるニューラルネットワーク
  • Clojure/Incanter/clj-mlでデータマイニング入門 - あんちべ!

    概要 Clojureでデータマイニングに必要な各手法を解説する記事です。 記事を読むと、全くClojureを知らない方でも データ抽出・集計 可視化 機械学習(決定木、ランダムフォレスト、k-meansクラスタリング) をClojureで実行できるようになります。 はじめに ClojureとはJVM上で動く(つまりOSを問わず沢山の環境で動く上に Java資産をそのまま使える)Lisp系の言語です。 Clojureではデータマイニングを行う際、 Incanterとclj-mlという2つの便利なツールがあります。 Incanterは統計処理用の専門ライブラリで、 単体で様々な統計分析を行ったり集計を便利にしたりする機能が沢山用意されています。 clj-mlはwekaという機械学習系のツールをClojureで簡単に使えるようにしたラッパーで、 決定木やランダムフォレストなどの分類器や 各種ク

    Clojure/Incanter/clj-mlでデータマイニング入門 - あんちべ!
  • Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ

    追記 2016年3月に以下の記事によってこの内容はupdateされています。今後はそちらをお読み下さい。 主に自分向けのまとめという意味合いが強いんですが(笑)、僕が実際に2013年6月現在webデータ分析&データサイエンスの実務でツール・ライブラリ・パッケージを利用しているものに限って、統計学・機械学習系の分析手法を10個挙げて紹介してみようと思います。 追記 回帰分析(特に線形重回帰分析) 独立性の検定(カイ二乗検定・フィッシャーの正確確率検定) 主成分分析(PCA) / 因子分析 クラスタリング 決定木 / 回帰木 サポートベクターマシン(SVM) ロジスティック回帰 ランダムフォレスト アソシエーション分析(バスケット分析・相関ルール抽出) 計量時系列分析 おわりに おまけ1:「素性ベクトル+分類ラベル」なるデータ前処理 おまけ2:グラフ理論*10 {igraph}パッケージでグラ

    Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ
  • 機械学習の理論と実践

    SACSIS2013でのチュートリアル講演資料です。機械学習の導入:背景、手法、理論、応用)、実践:オンライン学習+線形分類で実際作ってみる、使う際の課題、発展:分散+リアルタイムでの機械学習(Jubatus)、深層学習(Deep Neural Net)についてまとめましたRead less

    機械学習の理論と実践
  • 計量学習を用いた画像検索エンジンとアニメ顔類似検索v3について - デー

    まだgithubにはpushしていないのですが、さいきょうの組み込み型画像検索エンジンotamaに計量学習を用いて与えられたデータにあった画像間の距離関数を学習してそれを使って検索するというドライバを入れたので、先行的なデモとしてアニメ顔類似検索v3を作ってみました。 計量学習は、ベクトル間の距離の計り方を機械学習で決めるみたいな分野です。 アニメ顔類似検索v3 AnimeFace Search v3 - Otama LMCA_VLAD_HSV Driver randomボタンを押すと顔画像がランダムに出るのでどれかクリックするとそれをクエリに検索します。color weightは色の重みを調節するパラメーターで、1にすると色だけで検索します。0にすると形状やテクスチャだけで検索します。結果画像の上の数字は類似度的なもので、その横のgglは元画像をGoogle Search by Imag

  • LIBLINEARを用いた機械学習入門(単語分割)

    このページでは機械学習のツール(LIBLINEAR)を利用して、実際に分類問題を解くにはどういう手順を経るかということについて解説します。つまり、Kytea(京都テキスト解析ツールキット)における簡易版の単語分割モデルを作ってみようということです。 なお今回はプログラミング言語としてRubyを用いますが、Rubyの知識がなくても実装ができるように解説するよう心がけます。また、必要以上に細かく書いてあるかもしれませんが、不要な方は適宜読み飛ばして下さい。 細かい説明はすっとばしてやり方を見る 機械学習って? 朱鷺の杜Wiki 「機械学習」がわかりやすいかと思います。 ひとことで言うと、「訓練データを与えてそこから機械に問題の解き方を学んでもらい、別の問題を解いてもらうこと」です。 教師あり学習・教師なし学習 機械学習は大きく「教師あり」と「教師なし」に分かれます。 「教師あり学習」とは

  • 1