フーリエ級数展開 信州大学工学部 井澤裕司 フーリエ級数展開は、信号とスペクトルの関係を理解する上で最も重要な概念です。 その内容が把握できれば、フーリエ変換や離散フーリエ変換、サンプリングの物理的な意味や、 それらの相互関係を理解することも容易です。 ここでは、数学的手法に基く厳密な解説は避け、より直観的に理解できるようなツールをいくつか用意しました。 図中のボタンを操作することにより、関数の波形やフーリエ係数等の数値をインタラクティブに変更することが可能です。 これらを活用して、信号の対称性とフーリエ係数の関係や、直交関数のイメージについて、理解を深めて下さい。 1. 定義(その1) はじめに、フーリエ級数展開の定義を示しましょう。 周期関数を x(t) とします。ここで t は時間、T0 は周期を表します。 この関数が、ディリクレの条件を満たすとき、T0 の整数倍の周